Project Manual

Construction Documents

Liberty Distribution Center
1138 Southview Dr
Liberty, Missouri 64068

Prepared For:
Liberty Public Schools
8 Victory Lane
Liberty, Missouri 64068

HM Project No: 23021
Issue Date: October 10, 2023

Contents:
Volume 1: Introductory Information, Bidding and Contracting Requirements, Division 1 - 12.
Volume 2: Division 21 through Division 33.
PORT 000101 - PROJECT TEAM DIRECTORY

PART 1 - GENERAL

1.1 CONSTRUCTION MANAGER INFORMATION

 A. Newkirk Novak Construction Partners has been selected as the Construction Manager for this project, and as such, will act as the Owner’s representative.

 B. All communication, both written and oral, must be directed through the Construction Manager.

1.2 PROJECT TEAM INFORMATION

 A. PROJECT:
 1. Name: Liberty Public Schools Distribution Center
 2. Location: 1138 Southview Dr, Liberty, Missouri 64068
 3. Project No: 23021

 B. OWNER:
 1. Name: Liberty Public Schools
 2. Address: 8 Victory Lane, Liberty, Missouri 64068
 3. Contact: Justin Presson
 4. Phone: 816.736.5448

 C. CONSTRUCTION MANAGER:
 1. Name: Newkirk Novak Construction Partners
 2. Address: 11200 W. 79th Street, Lenexa, Kansas 66241
 3. Contact: Brandon Stanley
 4. Email: Brandon.Stanley@newkirknovak.com
 5. Phone: 913.312.9535.

 D. ARCHITECT:
 1. Name: Hollis + Miller Architects, Inc.
 2. Address: 1828 Walnut Street, Suite 922, Kansas City, MO 64108.
 3. Contact: Shea Ensor
 4. Email: sensor@HollisandMiller.com
 5. Phone: 816.442.7700 / Fax: 816.599.2545

 E. CIVIL ENGINEER:
 1. Name: MKEC Engineering, Inc.
 2. Address: 11827 W 112th Street, Suite 200, Overland Park, Kansas 66210.
 3. Contact: Braden Taylor
 4. Email: btaylor@mkec.com
 5. Phone: 913.317.9390.

 F. STRUCTURAL ENGINEER:
 1. Name: Bob D. Campbell & Co.
 2. Address: 4338 Belleview Ave, Kansas City, Missouri 64111.
 3. Contact: Wayne Davis
 4. Email: wdavis@bdc- engrs.com
 5. Phone: 816.531.4114 / Fax: 816.531.8572

 G. MEP ENGINEER:
 1. Name: Smith and Boucher
 2. Address: 25618 W 103rd Street, Olathe, Kansas 66061.
 3. Contact: Ryan Diediker
 4. Email: rdiediker@smithboucher.com
 5. Phone: 913.345.2127.
H. GEOTECHNICAL ENGINEERS:
 1. Name: Kruger Technologies, Inc.
 2. Address: 8721 Melrose Drive, Lenexa, Kansas 66214
 3. Contact: Dylan Kruger
 4. Email: dzkruger@ktionline.com
 5. Phone: 913.498.1114 / Fax: 913.498.1116

I. FOOD SERVICE CONSULTANT:
 1. Name: Feller's Food Service
 2. Address: 2140 Grand Street, Springfield, Missouri, 65802
 3. Contact: Mike Fiddyment
 4. Phone: 417.862.0812

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION 000101
I HEREBY, PURSUANT TO RSMO 327.411, STATE THAT THE SPECIFICATIONS INTENDED TO BE AUTHENTICATED BY MY SEAL ARE LIMITED TO SPECIFICATIONS LISTED BELOW:

DIVISION 1 SECTIONS: 011000, 012100, 012200, 012300, 012500, 013100, 013200, 013233, 013300, 014000, 014200, 014529, 016000, 017419, 017700, 017823, 017839, 017900.
DIVISION 4 SECTION: 042000.
DIVISION 5 SECTIONS: 055000, 055100, 055213.
DIVISION 6 SECTIONS: 061000, 061600, 062013.
DIVISION 7 SECTIONS: 071113, 071326, 071900, 072100, 072500, 074213, 074219, 075423, 076200, 077200, 078413, 078413, 078446, 079020.
DIVISION 8 SECTIONS: 081113, 081416, 083323, 083613, 083800, 084113, 087100, 088000, 088300.
DIVISION 9 SECTIONS: 092116, 092900, 093000, 095113, 096513, 096519, 096813, 098433, 099113, 099123, 099600.
DIVISION 10 SECTIONS: 101400, 101423, 102113, 102310, 102600, 102800, 104300, 104413, 104416, 105629.
DIVISION 11 SECTION: 111300.
DIVISION 12 SECTIONS: 122113, 122413, 123200, 123666, 129300.
DIVISION 32 SECTION: 323119.

I HEREBY DISCLAIM ANY RESPONSIBILITY FOR ALL OTHER SPECIFICATIONS, DRAWINGS, ESTIMATES, REPORTS, OR OTHER DOCUMENTS OR INSTRUMENTS RELATING TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE ARCHITECTURAL OR ENGINEERING PROJECT OR SURVEY.

KEVIN NELSON ________________ OCTOBER 10, 2023 _______________________________
ARCHITECT DATE
MEP ENGINEER

I HEREBY, PURSUANT TO RSMO 327.411, STATE THAT THE SPECIFICATIONS INTENDED TO BE AUTHENTICATED BY MY SEAL ARE LIMITED TO SPECIFICATIONS LISTED BELOW:

<table>
<thead>
<tr>
<th>DIVISION 21 SECTIONS:</th>
<th>210500, 211313</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 22 SECTIONS:</td>
<td>220500, 220513, 220516, 220517, 220518, 220519, 220523, 220529, 220532, 220719, 221116, 221119, 221316, 221319, 223400, 224000, 224700</td>
</tr>
<tr>
<td>DIVISION 23 SECTIONS:</td>
<td>230500, 230513, 230548, 230553, 230553, 230713, 230719, 230900, 231123, 233200, 233113, 233116, 233300, 233416, 233423.01, 233423.01, 233600, 233713, 237416.11, 237416.13, 238126, 238239.13</td>
</tr>
<tr>
<td>DIVISION 26 SECTIONS:</td>
<td>260500, 260519, 260523, 260526, 260529, 260533, 260533, 260533, 260923, 260943, 262200, 262416, 262726, 262813, 262816, 263213, 263600, 264113, 265119, 265219, 265619</td>
</tr>
<tr>
<td>DIVISION 27 SECTIONS:</td>
<td>270000, 270500, 270526, 270536, 275116</td>
</tr>
<tr>
<td>DIVISION 28 SECTIONS</td>
<td>280000, 280500, 280513, 283111</td>
</tr>
</tbody>
</table>

I HEREBY DISCLAIM ANY RESPONSIBILITY FOR ALL OTHER SPECIFICATIONS, DRAWINGS, ESTIMATES, REPORTS, OR OTHER DOCUMENTS OR INSTRUMENTS RELATING TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE ARCHITECTURAL OR ENGINEERING PROJECT OR SURVEY.

RYAN J. DIEDIKER, PE, RCDD, LEED AP DATE 10.10.2023
SECTION 000105 – CERTIFICATIONS & SEALS

Civil Engineer:

I hereby state, pursuant to RSMo 327.411, that the Specifications intended to be authenticated by my seal are limited to Specification Sections listed below:

Division 31 Sections: 311000 & 312000
Division 32 Sections: 321216, 321313, 321373, & 323113
Division 33 Sections: 331100, 333100, & 334100

I hereby disclaim any responsibility for all other specifications, drawings estimates, reports, or other documents or instruments relating to or intended to be used for any part or parts of the architectural or engineering project or survey.

Engineers:

Date

Liberty Public Schools
Distribution Center
Project No. 23021

CERTIFICATIONS AND SEALS
000105 - 1
October 2023
DOCUMENT 000110 – TABLE OF CONTENTS

Project Name: Liberty SD Distribution Center
Project No.: 23021
Site Address: 1138 Southview Dr
City, State Zip: Liberty, Missouri 64068

INTRODUCTORY INFORMATION

000101 Project Team Directory 10.10.2023
000105 Certifications and Seals 10.10.2023
000110 Table of Contents 10.10.2023

BIDDING REQUIREMENTS
(Refer to Construction Manager's Front End Manual for additional Bidding Requirements)

003132 Geotechnical Data 10.10.2023

CONTRACTING REQUIREMENTS
(Refer to Construction Manager's Front End Manual for additional Contracting Requirements)

DIVISION 1 – GENERAL REQUIREMENTS

011000 Summary 10.10.2023
012100 Allowances 10.10.2023
012200 Unit Prices 10.10.2023
012300 Alternates 10.10.2023
012500 Substitution Procedures 10.10.2023
013100 Project Management and Coordination 10.10.2023
013200 Construction Progress Documentation 10.10.2023
013233 Photographic Documentation 10.10.2023
013300 Submittal Procedures 10.10.2023
014000 Quality Requirements 10.10.2023
014200 References 10.10.2023
014529 Testing and Inspections 10.10.2023
016000 Product Requirements 10.10.2023
017419 Construction Waste Management & Disposal 10.10.2023
017700 Closeout Procedures 10.10.2023
017823 Operation and Maintenance Data 10.10.2023
017839 Project Record Documents 10.10.2023
017900 Demonstration and Training 10.10.2023

DIVISION 3 – CONCRETE

033000 Cast-in-Place Concrete 10.10.2023

DIVISION 4 - MASONRY

042000 Unit Masonry 10.10.2023

DIVISION 5 - METALS

051200 Structural Metal Framing 10.10.2023
052100 Steel Joist Framing 10.10.2023
053100 Steel Decking 10.10.2023
054000 Cold-Formed Metal Framing 10.10.2023
055000 Metal Fabrications 10.10.2023
055100 Metal Stairs 10.10.2023
055213 Pipe and Tube Railings 10.10.2023
DIVISION 6 – WOOD AND PLASTICS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Latest Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>061000</td>
<td>Rough Carpentry</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>061600</td>
<td>Sheathing</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>062013</td>
<td>Exterior Finish Carpentry</td>
<td>10.10.2023</td>
</tr>
</tbody>
</table>

DIVISION 7 - THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Latest Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>071113</td>
<td>Bituminous Dampproofing</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>071326</td>
<td>Self-Adhering Sheet Waterproofing</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>071900</td>
<td>Water Repellents and Sealers</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>072100</td>
<td>Thermal Insulation</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>072500</td>
<td>Weather Barriers</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>074213</td>
<td>Formed Metal Wall and Soffit Panels</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>074219</td>
<td>Insulated Metal Wall Panels</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>075423</td>
<td>Thermoplastic Polyolefin (TPO) Roofing</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>076200</td>
<td>Sheet Metal Flashing and Trim</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>077200</td>
<td>Roof Accessories</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>078413</td>
<td>Penetration Firestopping</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>078446</td>
<td>Fire Resistive Joint Systems</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>079200</td>
<td>Joint Sealants</td>
<td>10.10.2023</td>
</tr>
</tbody>
</table>

DIVISION 8 - DOORS AND WINDOWS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Latest Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>081113</td>
<td>Hollow Metal Doors and Frames</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>081416</td>
<td>Flush Wood Doors</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>083323</td>
<td>Overhead Coiling Doors</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>083613</td>
<td>Sectional Doors</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>083800</td>
<td>Traffic Doors</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>084113</td>
<td>Aluminum Framed Entrances and Storefronts</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>087100</td>
<td>Door Hardware</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>088000</td>
<td>Glazing</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>088300</td>
<td>Mirrors</td>
<td>10.10.2023</td>
</tr>
</tbody>
</table>

DIVISION 9 - FINISHES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Latest Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>092116</td>
<td>Non-Structural Metal Framing</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>092900</td>
<td>Gypsum Board</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>093000</td>
<td>Tiling</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>095113</td>
<td>Acoustical Panel Ceilings</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>096513</td>
<td>Resilient Base and Accessories</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>096519</td>
<td>Resilient Tile Flooring</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>096813</td>
<td>Tile Carpeting</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>098433</td>
<td>Acoustical Wall Units</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>099113</td>
<td>Exterior Painting</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>099123</td>
<td>Interior Painting</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>099600</td>
<td>High-Performance Coatings</td>
<td>10.10.2023</td>
</tr>
</tbody>
</table>

DIVISION 10 – SPECIALTIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Latest Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>101400</td>
<td>Signage</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>101423</td>
<td>ADA and Code Signage</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>102113</td>
<td>Toilet Compartments</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>102310</td>
<td>Glazed Interior Wall and Door Assemblies</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>102600</td>
<td>Wall and Door Protection</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>102800</td>
<td>Toilet, Bath & Laundry Accessories</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>104300</td>
<td>Emergency Aid Specialties</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>104413</td>
<td>Fire Extinguisher Cabinets</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>104416</td>
<td>Fire Extinguishers</td>
<td>10.10.2023</td>
</tr>
<tr>
<td>105629</td>
<td>Pallet Storage Racks</td>
<td>10.10.2023</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DIVISION 11 - EQUIPMENT
11300 Loading Dock Equipment
114000 Food Service Equipment

DIVISION 12 - FURNISHINGS
122113 Horizontal Louver Blinds
122413 Roller Window Shades
123200 Manufactured Wood Casework
123666 Solid Surfacing Countertops
129300 Site Furnishings

DIVISION 21 – FIRE SUPPRESSION
210500 Common Work Results for Fire Suppression
211313 Wet-Pipe Sprinkler Systems

DIVISION 22 - PLUMBING
220500 Common Work Results for Plumbing
220513 Common Motor Requirements for Plumbing Equipment
220516 Expansion Fittings and Loops for Plumbing Piping
220517 Sleeves and Sleeve Seals for Plumbing Piping
220518 Escutcheons for Plumbing Piping
220519 Meters and Gauges for Plumbing Piping
220523 General Duty Valves for Plumbing Piping
220529 Hangers and Supports for Plumbing Piping and Equipment
220553 Identification for Plumbing Piping and Equipment
220719 Plumbing Piping Insulation
221116 Domestic Water Piping
221119 Domestic Water Piping Specialties
221316 Sanitary Waste and Vent Piping
221319 Sanitary Waste Piping Specialties
223400 Fuel- Fired, Domestic Water Heaters
224000 Plumbing Fixtures
224700 Drinking Fountains/Water Coolers

DIVISION 23 - HEATING, VENTILATING AND AIR CONDITIONING
230500 Common Work Results for HVAC
230513 Common Motor Requirements for HVAC Equipment
230548 Vibration Controls for HVAC
230553 HVAC System Identification
230593 Testing, Adjusting, and Balancing
230713 Duct Insulation
230719 HVAC Piping Insulation
230900 Instrumentation and Control for HVAC
231123 Facility Natural-Gas Piping
232300 Refrigerant Piping
233113 Metal Ducts
233116 Nonmetal Ducts
233300 Duct Accessories
233416 Centrifugal HVAC Fans
233423.01 HVAC Dust Collector
233600 Air Terminal Units
233713 Diffusers, Registers, and Grilles
237416.11 Packaged, Small-Capacity, Rooftop Air-Conditioning Units
237416.13 Packaged, Large-Capacity, Rooftop Air-Conditioning Units
238126 Split-System Air-Conditioners
238239.13 Cabinet Unit Heaters
<table>
<thead>
<tr>
<th>Division</th>
<th>Description</th>
<th>Latest Revision</th>
<th>Original Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>ELECTRICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260500</td>
<td>Common Work Results for Electrical</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>260523</td>
<td>Control-Voltage Electrical Power Cables</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>260533</td>
<td>Raceway and Boxes for Electrical Systems</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>260923</td>
<td>Lighting Control Devices</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>260943</td>
<td>Relay-Based Lighting Controls</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>262200</td>
<td>Transformers</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>263213</td>
<td>Engine Generators</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>263600</td>
<td>Transfer Switches</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>264113</td>
<td>Lightning Protection for Structures</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>265119</td>
<td>LED Interior Lighting</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>265219</td>
<td>Emergency and Exit Lighting</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>265619</td>
<td>LED Exterior Lighting</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>270000</td>
<td>District Communications Specifications (LPS Standard)</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>270500</td>
<td>Common Work Results for Communications</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>270526</td>
<td>Grounding and Bonding for Communications Systems</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>270536</td>
<td>Cable Trays for Communications Systems</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>275116</td>
<td>Public Address System</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>280500</td>
<td>Common Work Results for Electronic Safety and Security</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>280513</td>
<td>Conductors and Cables for Electronic Safety and Security</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>283111</td>
<td>Digital, Addressable Fire-Alarm System</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>311000</td>
<td>Site Clearing</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>312000</td>
<td>Earth Moving</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>321216</td>
<td>Asphalt Paving</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>321313</td>
<td>Concrete Paving</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>321373</td>
<td>Concrete Paving Joint Sealants</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>323113</td>
<td>Chain Link Fences and Gates</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>323119</td>
<td>Decorative Metal Fences and Gates</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>331100</td>
<td>Water Utility Distribution Piping</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>333100</td>
<td>Facility Sanitary Sewers</td>
<td>10.10.2023</td>
<td></td>
</tr>
<tr>
<td>334100</td>
<td>Storm Utility Drainage Piping</td>
<td>10.10.2023</td>
<td></td>
</tr>
</tbody>
</table>

END OF TABLE OF CONTENTS
SECTION 210500 - COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Mechanical sleeve seals.
 3. Sleeves.
 4. Escutcheons.
 5. Grout.
 6. Concrete bases.
 7. Supports and anchorages.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.5 COORDINATION

A. Coordinate layout and installation with all other trades. Refer to section 230500 ‘Common Work Results for HVAC’, paragraphs 1.3 and 1.4 for specific requirements regarding coordination procedures required.
PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

A. Refer to individual Division 21 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.

2.3 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

C. Pressure Plates: Carbon steel or stainless steel. Include two for each sealing element.

D. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating or stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.4 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

 1. Underdeck Clamp: Clamping ring with set screws.

E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.

G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.
2.5 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

2.6 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors.

M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

Q. Verify final equipment locations for roughing-in.

R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.
B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions.
1. Construct concrete bases a minimum of 4 inches and a maximum of 6 inches deep, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section “Cast-in-Place Concrete” or “Miscellaneous Cast-in-Place Concrete.”

3.4 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.5 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor fire-suppression materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.6 GROUTING

A. Mix and install grout for fire-suppression equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 210500
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 3. Fire-department connections.
 4. Sprinklers.
 5. Excess-pressure pumps.
 6. Alarm devices.
 7. Pressure gages.

B. Related Sections:
 1. Division 21 Section "Fire-Suppression Standpipes" for standpipe piping.

1.2 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

B. Deluge Sprinkler System: Open sprinklers are attached to piping connected to water supply through deluge valve. Fire-detection system, in same area as sprinklers, opens valve. Water flows into piping system and discharges from attached sprinklers when valve opens.

1.3 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design sprinkler system, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 1. Engage utility for a flow test to confirm pressures and flows.

C. Sprinkler system design shall be approved by authorities having jurisdiction.
 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 2. Sprinkler Occupancy Hazard Classifications:
 a. Building Service Areas: Ordinary Hazard, Group 1.
 b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 c. General Storage Areas: Ordinary Hazard, Group 1.
 d. Laundries: Ordinary Hazard, Group 1.
 e. Libraries except Stack Areas: Light Hazard.
 f. Library Stack Areas: Ordinary Hazard, Group 2.
 g. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 h. Office and Public Areas: Light Hazard.
 i. Repair Garages: Ordinary Hazard, Group 2.
 j. Restaurant Service Areas: Ordinary Hazard, Group 1.
 k. Solvent Cleaning Areas: Extra Hazard, Group 2.
 3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 d. Special Occupancy Hazard: As determined by authorities having jurisdiction.
 4. Maximum Protection Area per Sprinkler: Per UL listing.
 5. Maximum Protection Area per Sprinkler:
 a. Office Spaces: 225 sq. ft.
 b. Storage Areas: 130 sq. ft.
 c. Mechanical Equipment Rooms: 130 sq. ft.
d. Electrical Equipment Rooms: 130 sq. ft.
e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
D. Qualification Data: For qualified Installer and professional engineer.
E. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
F. Welding certificates.
G. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
H. Field quality-control reports.
I. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."
 2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height."
 3. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.
2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Galvanized- and Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

B. Schedule 30, Galvanized- and Black-Steel Pipe: ASTM A 135; ASTM A 795/A 795M, Type E; or ASME B36.10M, wrought steel; with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.

C. Thinwall Galvanized- and Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, threadable, with wall thickness less than Schedule 30 and equal to or greater than Schedule 10. Pipe ends may be factory or field formed to match joining method.

E. Galvanized and uncoated, Steel Couplings: ASTM A 865, threaded.

G. Malleable- or Ductile-Iron Unions: UL 860.

I. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

K. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Pre-approved equal.
 2. Pressure Rating: 175 psig minimum.
 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.
 1. Class 125, Cast-Iron Flat-Face Flanges: Full-face gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:
 1. Valves shall be UL listed or FM approved.

B. Check Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
b. Anvil International, Inc.
c. Clow Valve Company; a division of McWane, Inc.
d. Crane Co.; Crane Valve Group; Crane Valves.
e. Crane Co.; Crane Valve Group; Jenkins Valves.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. Fire-End & Croker Corporation.
h. Fire Protection Products, Inc.
i. Globe Fire Sprinkler Corporation.
j. Kennedy Valve; a division of McWane, Inc.
k. Metraflex, Inc.
l. Milwaukee Valve Company.
m. Mueller Co.; Water Products Division.
n. NIBCO INC.
o. Potter Roemer.
p. Reliable Automatic Sprinkler Co., Inc.
q. Tyco Fire & Building Products LP.
r. United Brass Works, Inc.
s. Venus Fire Protection Ltd.
t. Victaulic Company.
u. Viking Corporation.
v. Watts Water Technologies, Inc.
w. Pre-approved equal.

3. Pressure Rating: 250 psig minimum
4. Type: Swing check.
5. Body Material: Cast iron.
6. End Connections: Flanged or grooved.

C. Bronze OS&Y Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. United Brass Works, Inc.
 f. Pre-approved equal.
5. End Connections: Threaded.

D. Iron OS&Y Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Crane Valves.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. Hammond Valve.
 h. Milwaukee Valve Company.
 i. Mueller Co.; Water Products Division.
 j. NIBCO INC.
 k. Tyco Fire & Building Products LP.
 l. United Brass Works, Inc.
 m. Watts Water Technologies, Inc.
 n. Pre-approved equal.
3. Pressure Rating: 250 psig minimum
4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

E. Indicating-Type Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.5 TRIM AND DRAIN VALVES

A. General Requirements:

B. Ball Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Fire-End & Croker Corporation.
 d. Fire Protection Products, Inc.
 e. Flowserve.
 f. Kennedy Valve; a division of McWane, Inc.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Potter Roemer.
 j. Red-White Valve Corporation.
 k. Tyco Fire & Building Products LP.
 l. Victaulic Company.
 m. Watts Water Technologies, Inc.
 n. Pre-approved equal.

2.6 SPECIALTY VALVES

A. General Requirements:
3. Body Material: Cast or ductile iron.
4. Size: Same as connected piping.
5. End Connections: Flanged or grooved.

B. Alarm Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.
 f. Pre-approved equal.
3. Design: For horizontal or vertical installation.
4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

C. Automatic (Ball Drip) Drain Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Pre-approved equal.
4. Type: Automatic draining, ball check.

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Pre-approved equal.
5. Type: Mechanical-T and -cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Pre-approved equal.
4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

C. Branch Line Testers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.
 d. Pre-approved equal.
2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded and capped.
D. Sprinkler Inspector’s Test Fittings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.
 f. Pre-approved equal.
4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.
 c. Merit Manufacturing; a division of Anvil International, Inc.
 d. Pre-approved equal.
5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

F. Flexible, Sprinkler Hose Fittings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fitalco Inc.
 b. FlexHead Industries, Inc.
 c. Gateway Tubing, Inc.
 d. Pre-approved equal.
3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
5. Size: Same as connected piping, for sprinkler.

2.8 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Reliable Automatic Sprinkler Co., Inc.
3. Tyco Fire & Building Products LP.
4. Venus Fire Protection Ltd.
5. Victaulic Company.
7. Pre-approved equal.

B. General Requirements:
4. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig minimum.

C. Automatic Sprinklers with Heat-Responsive Element:
2. Nonresidential Applications: UL 199.
3. Residential Applications: UL 1626.
4. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
D. Sprinkler Finishes:
 1. Chrome plated.
 2. Bronze.
 3. Painted.

E. Special Coatings:
 1. Wax.
 2. Lead.
 3. Corrosion-resistant paint.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 1. Ceiling Mounting: Chrome-plated steel, two piece, with 1-inch vertical adjustment.
 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
 e. Pre-approved equal.
 2. Standard: UL 199.
 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.9 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Motor-Operated Alarm:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
 e. Pre-approved equal.
 2. Standard: UL 753.
 3. Type: Mechanically operated, with Pelton wheel.
 5. Size: 10-inch diameter.
 6. Components: Shaft length, bearings, and sleeve to suit wall construction.
 8. Outlet: NPS 1 drain connection.

C. Water-Flow Indicators:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
 g. Pre-approved equal.
 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 5. Type: Paddle operated.
 7. Design Installation: Horizontal or vertical.

D. Valve Supervisory Switches:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Pre-approved equal.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

2.10 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft, Inc.
 4. WIKA Instrument Corporation.
 5. Pre-approved equal.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 250 psig minimum.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

F. Air System Piping Gage: Include retard feature and "AIR" or "AIR/WATER" label on dial face.

2.11 ESCUTCHEONS

A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.

B. One-Piece, Cast-Brass Escutcheons: Polished chrome-plated finish with set-screws.

D. One-Piece, Stamped-Steel Escutcheons: Chrome-plated finish with set-screw.

E. Split-Casting, Cast-Brass Escutcheons: Polished chrome-plated finish with concealed hinge and set-screw.

F. Split-Plate, Stamped-Steel Escutcheons: Chrome-plated finish with concealed hinge, set-screw.

G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.12 SLEEVES

A. Cast-Iron Wall Pipe Sleeves: Cast or fabricated of cast iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Molded-PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

D. Molded-PVC Sleeves: Permanent, with nailing flange for attaching to wooden forms.

E. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
2.13 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex, Inc.
 4. Pipeline Seal and Insulator, Inc.
 5. Pre-approved equal.

B. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel, plastic, or stainless steel.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating or stainless steel of length required to secure pressure plates to sealing elements.

2.14 GROUT

A. Standard: ASTM C 1107, Grade B, posthardening and volume adjusting, dry, hydraulic-cement grout.

B. Characteristics: Nonshrink, and recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SERVICE-ENTRANCE PIPING

A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements for exterior piping in Division 21 Section "Facility Fire-Suppression Water-Service Piping."

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping.

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

M. Fill sprinkler system piping with water.

N. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing. Comply with requirements for heating cables in Division 21 "Heat Tracing for Fire-Suppression Piping" and for piping insulation in Division 21 Section "Fire-Suppression Systems Insulation."

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system’s pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.

I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
K. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

L. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

M. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.

3.5 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

C. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.6 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:
 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece or split casting, cast brass with polished chrome-plated finish.
 4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
 5. Bare Piping in Equipment Rooms: One piece, cast brass or stamped steel with set-screw.
 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.7 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Permanent sleeves are not required for holes formed by removable PE sleeves.

D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

E. Install sleeves in new partitions, slabs, and walls as they are built.
F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section "Joint Sealants."

G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements for joint sealants in Division 07 Section "Joint Sealants."

H. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals.

I. Seal space outside of sleeves in concrete slabs and walls with grout.

J. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.

K. Install sleeve materials according to the following applications:
 1. Sleeves for Piping Passing through Concrete Floor Slabs: Galvanized-steel pipe.
 2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Galvanized-steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements for flashing in Division 07 Section "Sheet Metal Flashing and Trim."
 3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.
 c. Exception: Sleeves are not required for water-supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.
 4. Sleeves for Piping Passing through Concrete Roof Slabs: Galvanized-steel pipe.
 5. Sleeves for Piping Passing through Exterior Concrete Walls:
 b. Cast-iron wall-pipe sleeves for pipes NPS 6 and larger.
 c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
 6. Sleeves for Piping Passing through Interior Concrete Walls:
 b. Galvanized-steel-sheet sleeves for pipes NPS 6 and larger.

L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestop materials and installations in Division 07 Section "Penetration Firestopping."

3.8 SLEEVE SEAL INSTALLATION

A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.

B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.9 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Tests and Inspections:
1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Start and run excess-pressure pumps.
6. Coordinate with fire-alarm tests. Operate as required.
7. Coordinate with fire-pump tests. Operate as required.
8. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 CLEANING
A. Clean dirt and debris from sprinklers.
B. Remove and replace sprinklers with paint other than factory finish.

3.12 PIPING SCHEDULE
A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded or grooved ends; grooved-end fittings; grooved-end-pipe couplings, and grooved joints.
B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
C. Wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight, black-steel pipe with plain ends; uncoated, plain-end-pipe fittings; and twist-locked joints.
4. Standard-weight, galvanized-steel pipe with plain ends; galvanized, plain-end-pipe fittings; and twist-locked joints.
5. Standard-weight, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
6. Standard-weight, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
7. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 6, shall be one of the following:
1. Standard-weight or Schedule 30, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
2. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
3. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
4. Thinwall black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Thinwall black-steel pipe with plain ends; welding fittings; and welded joints.

3.13 SPRINKLER SCHEDULE
A. Use sprinkler types in subparagraphs below for the following applications:
1. All Gypsum Ceilings and/or Soffits: Concealed head sprinklers - custom color by Architect.
3. Locate sprinkler heads per detail on Drawings.
4. Stage: provide manufacturer provided cage around each sprinkler head.
5. Stage Craft: provide manufacturer provided cage around each sprinkler head.
6. Gyms: provide manufacturer provided cage around each sprinkler head.
7. Wrestling Room: provide manufacturer provided cage around each sprinkler head.
8. Weight Room: provide manufacturer provided cage around each sprinkler head.
9. Locker Rooms: provide manufacturer provided cage around each sprinkler head.
10. Rooms without Ceilings: Upright sprinklers.
11. Rooms with Suspended Ceilings: Pendent sprinklers.
13. Spaces Subject to Freezing: Pendent, dry sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Concealed Sprinklers: Rough brass, with custom color plate.
 2. Recessed Sprinklers: Bright chrome, with chrome escutcheon.
 3. Upright, Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 211313
SECTION 220500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Mechanical sleeve seals.
 5. Sleeves.
 7. Grout.
 8. Plumbing demolition.
 9. Equipment installation requirements common to equipment sections.
 10. Painting and finishing.
 11. Concrete bases.
 12. Supports and anchorages.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:
 2. CPVC: Chlorinated polyvinyl chloride plastic.
 3. PE: Polyethylene plastic.
 4. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.
B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 22 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

H. Solvent Cements for Joining Plastic Piping:
 1. ABS Piping: ASTM D 2235.
 2. CPVC Piping: ASTM F 493.
 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 4. PVC to ABS Piping Transition: ASTM D 3138.

I. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 1. Manufacturers:
 b. Dresser Industries, Inc.; DMD Div.
 c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 d. JCM Industries.
 e. Smith-Blair, Inc.
 f. Viking Johnson.
 2. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
 4. Aboveground Pressure Piping: Pipe fitting.

B. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Eson Thermoplastics.

C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Thompson Plastics, Inc.

D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 1. Manufacturers:
 a. NIBCO INC.
 b. NIBCO, Inc.; Chemtrol Div.

E. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 1. Manufacturers:
 b. Fernco, Inc.
 d. Plastic Oddities, Inc.
2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.
 g. Zurn Industries, Inc.; Wilkins Div.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 1. Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 1. Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.
 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Plastic, carbon steel, or stainless steel. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating or stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.
2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.

G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Type: With set screw and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw, and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 h. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 i. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, and concrete floor and roof slabs.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

R. Verify final equipment locations for roughing-in.

S. Coordinate location of vents through roof with rooftop mounted air units fresh air intakes.
T. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.

J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
5. Install shutoff valves on all equipment and piping branch lines that serve more than four pieces of equipment.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

E. Install floor drains for all equipment requiring condensate or indirect waste removal. Coordinate requirements with HVAC contractor and with Owner-furnished equipment.

3.5 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.6 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

END OF SECTION 220500
SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in plumbing equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513
SECTION 220516 - EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Flexible-hose packless expansion joints.
 2. Metal-bellows packless expansion joints.
 3. Rubber packless expansion joints.
 5. Pipe loops and swing connections.
 6. Alignment guides and anchors.

1.3 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

C. Welding certificates.

D. Product Certificates: For each type of expansion joint, from manufacturer.

E. Maintenance Data: For expansion joints to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 PACKLESS EXPANSION JOINTS

A. Flexible-Hose Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flex-Hose Co., Inc.
 b. Flexicraft Industries.
2. **Description**: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.

3. **Flexible Hose**: Corrugated-metal inner hoses and braided outer sheaths.

4. **Expansion Joints for Copper Tubing**
 - **NPS 2 and Smaller**: Copper-alloy fittings with solder-joint end connections.
 - a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.
 - b. Bronze hoses and double-braid bronze sheaths with 700 psig at 70 deg F and 500 psig at 450 deg F ratings.

5. **Expansion Joints for Copper Tubing**
 - **NPS 2-1/2 to NPS 4**: Copper-alloy fittings with threaded end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.
 - b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 420 psig at 70 deg F and 315 psig at 450 deg F ratings.

6. **Expansion Joints for Steel Piping**
 - **NPS 2 and Smaller**: Stainless-steel fittings with threaded end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F and 325 psig at 600 deg F (2250 kPa at 315 deg C) ratings.
 - b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 700 psig at 70 deg F and 515 psig at 600 deg F ratings.

7. **Expansion Joints for Steel Piping**
 - **NPS 2-1/2 to NPS 6**: Stainless-steel fittings with flanged end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.
 - b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 275 psig at 70 deg F and 200 psig at 600 deg F ratings.

8. **Expansion Joints for Steel Piping**
 - **NPS 8 to NPS 12**: Stainless-steel fittings with flanged end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 125 psig at 70 deg F and 90 psig at 600 deg F ratings.
 - b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 165 psig at 70 deg F and 120 psig at 600 deg F ratings.

B. Metal-Bellows Packless Expansion Joints:

1. **Manufacturers**: Subject to compliance with requirements, provide products by one of the following:
 - a. Adsco Manufacturing LLC.
 - b. American BOA, Inc.
 - c. Badger Industries, Inc.
 - d. Expansion Joint Systems, Inc.
 - e. Flex-Hose Co., Inc.
 - f. Flexicraft Industries.
 - g. Flex Pression Ltd.
 - h. Flex-Weld, Inc.
 - i. Flo Fab inc.
 - j. Hyspan Precision Products, Inc.
 - k. Metraflex, Inc.
 - l. Proco Products, Inc.
 - m. Senior Flexonics Pathway.
 - n. Tozen Corporation.
 - o. Unaflex.
 - p. Unisource Manufacturing, Inc.
 - q. Universal Metal Hose; a subsidiary of Hyspan Precision Products, Inc.
 - r. U.S. Bellows, Inc.
 - s. WahlcoMetroflex.
 - t. Pre-approved equal.

2. **Standards**: ASTM F 1120 and EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

3. **Type**: Circular, corrugated bellows with external tie rods.

4. **Minimum Pressure Rating**: 150 psig unless otherwise indicated.

5. **Configuration**: Single joint with base and double joint with base class(es) unless otherwise indicated.

6. **Expansion Joints for Copper Tubing**: Single- or multi-ply phosphor-bronze bellows, copper pipe ends, and brass shrouds.
a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint.
b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Solder joint.
c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.

C. Rubber Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amber/Booth Company, Inc.; a div. of Vibration Isolation Products of Texas, Inc.
 c. Metraflex, Inc.
 d. Pre-approved equal.
 4. Arch Type: multiple arches with external control rods.
 5. Spherical Type: multiple spheres with external control rods.
 6. Minimum Pressure Rating for NPS 1-1/2 to NPS 4: 150 psig at 220 deg F.
 7. Minimum Pressure Rating for NPS 5 and NPS 6: 140 psig at 200 deg F.
 8. Minimum Pressure Rating for NPS 8 to NPS 12: 140 psig at 180 deg F.
 9. Material for Water: EPDM.

2.2 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Adsco Manufacturing LLC.
 b. Advanced Thermal Systems, Inc.
 c. Flex-Hose Co., Inc.
 d. Flexcraft Industries.
 e. Flex-Weld, Inc.
 f. Hyspan Precision Products, Inc.
 g. Metraflex, Inc.
 h. Senior Flexonics Pathway.
 i. Unisource Manufacturing, Inc.
 j. U.S. Bellows, Inc.
 k. Pre-approved equal.
 2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.

B. Anchor Materials:
 1. Steel Shapes and Plates: ASTM A 36/A 36M.
 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.
 5. Chemical Fasteners: Insert-type-stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.
B. Install metal-bellows expansion joints according to EJMA’s “Standards of the Expansion Joint Manufacturers Association, Inc.”

C. Install rubber packless expansion joints according to FSA-NMEJ-702.

D. Install grooved-joint expansion joints to grooved-end steel piping

3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION

A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Connect risers and branch connections to mains with at least five pipe fittings including tee in main.

C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.

D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.

B. Install one or two guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.

C. Attach guides to pipe and secure guides to building structure.

D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

E. Anchor Attachments:
 2. Anchor Attachment to Galvanized-Steel Pipe: Attach with pipe hangers. Use MSS SP-69, Type 42, riser clamp welded to anchor.
 3. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, U-bolts bolted to anchor.

F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 220516
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

B. Related Requirements:
 1. Division 07 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc
 2. CALPICO, Inc
 3. GPT; an EnPro Industries company

B. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.

C. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, anticorrosion coated or galvanized, with plain ends and integral welded waterstop collar.

D. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc
 2. CALPICO, Inc
 3. GPT; an EnPro Industries company
 4. Metraflex Company (The)
 5. Proco Products, Inc

B. Description:
 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 2. Designed to form a hydrostatic seal of 20 psig minimum.
3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
4. Pressure Plates: Carbon steel.
5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B 633 of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Advance Products & Systems, Inc
2. CALPICO, Inc
3. GPT; an EnPro Industries company
4. Metraflex Company (The)
5. Proco Products, Inc

B. Description:
1. Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.
2. Plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.
C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. Fasten sleeves securely in floors and walls so that they will not become displaced when concrete is poured or when other construction is built around them. Take precautions to prevent concrete, plaster or other materials from being forced into space between pipe and sleeve during construction.
C. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.
D. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
E. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide minimum 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
F. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."
3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Use grout to seal the space around outside of sleeve-seal fittings.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.

B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves or sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Steel pipe sleeves or sleeve-seal fittings.
 2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system, or sleeve-seal fittings.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Steel pipe sleeves with sleeve-seal system, or sleeve-seal fittings.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system, or sleeve-seal fittings.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Steel pipe sleeves with sleeve-seal system, or sleeve-seal fittings.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves or sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Steel pipe sleeves.
 5. Interior Partitions:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

END OF SECTION 220517
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 DEFINITIONS

A. Existing Piping to Remain: Existing piping that is not to be removed and that is not otherwise indicated to be removed and salvaged, or removed and reinstalled.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BrassCraft Manufacturing Co.; a Masco company
 2. Dearborn Brass
 3. Keeney Manufacturing Company (The)
 4. Mid-America Fittings, Inc.
 5. ProFlo; a Ferguson Enterprises, Inc. brand

2.2 ESCUTCHEONS

A. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Stainless-Steel Type: With polished stainless-steel finish.
C. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
D. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped steel or brass with polished, chrome-plated finish and spring-clip fasteners.
E. One-Piece, Stamped-Steel Type: With polished, chrome-plated finish and spring-clip fasteners.
F. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed hinge; and spring-clip fasteners.

2.3 FLOOR PLATES

A. Split Floor Plates: Steel with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for exposed piping penetrations of finished walls, ceilings, and floors.
B. Install escutcheons on bare piping to be compatible with pipe material:
 1. Copper Piping: Brass
 2. Ferrous Piping: Steel.

C. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 1. Escutcheons for New Piping and Relocated Existing Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 b. Chrome-Plated Piping: One-piece or split-plate, with concealed hinge with polished, chrome-plated finish.
 c. Insulated Piping: One-piece or split-plate with concealed hinge with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece or split-plate with concealed hinge with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-plate with concealed hinge with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece or split-plate with concealed hinge with polished, chrome-plated finish.
 g. Bare Piping in Equipment Rooms: One-piece or split-plate with concealed hinge with polished, chrome-plated finish.
 2. Escutcheons for Existing Piping to Remain:
 a. Chrome-Plated Piping: Split-plate with concealed hinge with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate with concealed hinge with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate with concealed hinge with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: Split-plate with concealed hinge with polished, chrome-plated finish.
 f. Bare Piping in Equipment Rooms: Split-plate with concealed hinge with polished, chrome-plated finish.

D. Install floor plates for exposed piping penetrations of floors in finished areas with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping and Relocated Existing Piping: One-piece, floor plate.
 2. Existing Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 220518
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Filled-system thermometers.
 4. Light-activated thermometers.
 5. Thermowells.
 6. Dial-type pressure gages.
 7. Gage attachments.
 8. Test plugs.
 10. Sight flow indicators.

B. Related Sections:
 1. Division 21 Section "Facility Fire-Suppression Water-Service Piping" for fire-protection water-service meters outside the building.
 2. Division 21 fire-suppression piping Sections for fire-protection pressure gages.
 3. Division 22 Section "Facility Water Distribution Piping" for domestic water meters and combined domestic and fire-protection water-service meters outside the building.
 4. Division 22 Section "Domestic Water Piping" for water meters inside the building.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Product Certificates: For each type of meter and gage, from manufacturer.

C. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Trerice, H. O. Co.
 2. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 3. Weiss Instruments, Inc.
 4. Pre-approved equal.

C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.

F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
H. Window: Plain glass or plastic.

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1 percent of scale range.

2.2 FILLED-SYSTEM THERMOMETERS

A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ashcroft Inc.
 b. Marsh Bellofram.
 c. Miljoco Corporation.
 e. REOTEMP Instrument Corporation.
 f. Treice, H. O. Co.
 g. Weiss Instruments, Inc.
 h. Pre-approved equal.

3. Case: Sealed type, cast aluminum or drawn steel; 6-inch nominal diameter.
4. Element: Bourdon tube or other type of pressure element.
5. Movement: Mechanical, dampening type, with link to pressure element and connection to pointer.
6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
8. Window: Glass.
10. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device; with ASME B1.1 screw threads.
11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.

12. Accuracy: Plus or minus 1 percent of scale range.

B. Direct-Mounted, Plastic-Case, Vapor-Actuated Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ashcroft Inc.
 b. Miljoco Corporation.
 c. REOTEMP Instrument Corporation.
 d. Pre-approved equal.

3. Case: Sealed type, plastic; 4-1/2-inch nominal diameter.
4. Element: Bourdon tube or other type of pressure element.
5. Movement: Mechanical, with link to pressure element and connection to pointer.
6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
8. Window: Glass.
9. Ring: Metal or plastic.
10. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device; with ASME B1.1 screw threads.
11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.

12. Accuracy: Plus or minus 1 percent of scale range.

C. Remote-Mounted, Metal-Case, Vapor-Actuated Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
 c. Marsh Bellofram.
2. Meters and Gages for Plumbing

2.1 Remote-Mounted, Plastic-Case, Vapor-Actuated Thermometers:

2.1.1 Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- AMETEK, Inc.; U.S. Gauge.
- Ashcroft Inc.
- Miljoco Corporation.
- REOTEMP Instrument Corporation.
- Trerice, H. O. Co.
- Pre-approved equal.

2.1.2 Standard: ASME B40.200.

2.1.3 Case: Sealed type, plastic; 4-1/2-inch nominal diameter with back flange and holes for panel mounting.

2.1.4 Element: Bourdon tube or other type of pressure element.

2.1.5 Movement: Mechanical, with link to pressure element and connection to pointer.

2.1.6 Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.

2.1.7 Pointer: Dark-colored metal.

2.1.8 Window: Glass.

2.1.9 Ring: Metal or plastic.

2.1.10 Connector Type(s): Union joint, threaded, bottom; with ASME B1.1 screw threads.

2.1.11 Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.

2.1.12 Accuracy: Plus or minus 1 percent of scale range.

2.2 THERMOWELLS

2.2.1 Thermowells:

2.2.1.1 Standard: ASME B40.200.

2.2.1.2 Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.

2.2.1.3 Material for Use with Copper Tubing: CNR or CUNI.

2.2.1.4 Material for Use with Steel Piping: CRES or CSA.

2.2.1.5 Type: Stepped shank unless straight or tapered shank is indicated.

2.2.1.6 External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.

2.2.1.7 Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.

2.2.1.8 Bore: Diameter required to match thermometer bulb or stem.

2.2.1.9 Insertion Length: Length required to match thermometer bulb or stem.

2.2.1.10 Lagging Extension: Include on thermowells for insulated piping and tubing.

2.2.1.11 Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

2.2.2 Heat-Transfer Medium: Mixture of graphite and glycerin.
2.4 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Trerice, H. O. Co.
 b. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 c. Weiss Instruments, Inc.
 d. Pre-approved equal.
3. Case: Liquid-filled, sealed, open-front, pressure relief, solid-front, pressure relief type(s); cast aluminum or
drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type
 unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Ring: Brass or stainless steel.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

B. Direct-Mounted, Plastic-Case, Dial-Type Pressure Gages:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
 c. Flo Fab Inc.
 d. Marsh Bellofram.
 e. Miljoco Corporation.
 f. Noshok.
 g. Palmer Wahl Instrumentation Group.
 h. REOTEMP Instrument Corporation.
 i. Tel-Tru Manufacturing Company.
 j. Trerice, H. O. Co.
 k. Weiss Instruments, Inc.
 l. WIKA Instrument Corporation - USA.
 m. Winters Instruments - U.S.
 n. Pre-approved equal.
3. Case: Sealed type; plastic; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type
 unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

C. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
 c. Ernst Flow Industries.
 d. Flo Fab Inc.
 e. Marsh Bellofram.
 f. Miljoco Corporation.
 g. Noshok.
 h. Palmer Wahl Instrumentation Group.
 i. REOTEMP Instrument Corporation.
 j. Tel-Tru Manufacturing Company.
 k. Trerice, H. O. Co.
 l. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 m. Weiss Instruments, Inc.
 n. WIKA Instrument Corporation - USA.
METERS AND GAGES FOR PLUMBING

2.5 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston or porous-metal-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.6 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flow Design, Inc.
 4. Peterson Equipment Co., Inc.
 5. Sisco Manufacturing Company, Inc.
 6. Trerice, H. O. Co.
 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 8. Weiss Instruments, Inc.
 9. Pre-approved equal.

B. Description: Test-station fitting made for insertion into piping tee fitting.
C. **Body**: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. **Thread Size**: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.

E. **Minimum Pressure and Temperature Rating**: 500 psig at 200 deg F.

F. **Core Inserts**: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.7 TEST-PLUG KITS

A. **Manufacturers**: Subject to compliance with requirements, provide products by one of the following:
 1. Flow Design, Inc.
 4. Peterson Equipment Co., Inc.
 5. Sisco Manufacturing Company, Inc.
 6. Trerice, H. O. Co.
 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 8. Weiss Instruments, Inc.
 9. Pre-approved equal.

B. Furnish one test-plug kit containing two thermometers, one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

C. **Low-Range Thermometer**: Small, bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.

D. **High-Range Thermometer**: Small, bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.

E. **Pressure Gage**: Small, Bourdon-tube insertion type with 2- to 3-inch-diameter dial and probe. Dial range shall be at least 0 to 200 psig.

F. **Carrying Case**: Metal or plastic, with formed instrument padding.

2.8 SIGHT FLOW INDICATORS

A. **Manufacturers**: Subject to compliance with requirements, provide products by one of the following:
 1. Archon Industries, Inc.
 2. Dwyer Instruments, Inc.
 4. Ernst Co., John C., Inc.
 5. Ernst Flow Industries.
 6. KOBOLD Instruments, Inc. - USA; KOBOLD Messring GmbH.
 7. OPW Engineered Systems; a Dover company.
 8. Penberthy; A Brand of Tyco Valves & Controls - Prophetstown.
 9. Pre-approved equal.

B. **Description**: Piping inline-installation device for visual verification of flow.

C. **Construction**: Bronze or stainless-steel body, with sight glass and ball, flapper, or paddle wheel indicator, and threaded or flanged ends.

D. **Minimum Pressure Rating**: 150 psig.

E. **Minimum Temperature Rating**: 200 deg F.

F. **End Connections for NPS 2 and Smaller**: Threaded.
G. End Connections for NPS 2-1/2 and Larger: Flanged.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending a minimum of 2 inches into fluid and one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install remote-mounted pressure gages on panel.

I. Install valve and snubber in piping for each pressure gage for fluids.

J. Install test plugs in piping tees.

K. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.
 2. Inlets and outlets of each domestic water heat exchanger.
 3. Inlet and outlet of each domestic hot-water storage tank.
 4. Inlet and outlet of each remote domestic water chiller.

L. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Inlet and outlet of each pressure-reducing valve.
 3. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be one of the following:
 1. Sealed, bimetallic-actuated type.
 2. Direct-mounted, metal- or plastic-case, vapor-actuated type.
 3. Test plug with EPDM self-sealing rubber inserts.

B. Thermometers at inlets and outlets of each domestic water heat exchanger shall be one of the following:
 1. Sealed, bimetallic-actuated type.
 2. Direct-mounted, metal- or plastic-case, vapor-actuated type.
 3. Test plug with EPDM self-sealing rubber inserts.
C. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be one of the following:
 1. Sealed, bimetallic-actuated type.
 2. Direct-mounted, metal or plastic-case, vapor-actuated type.
 3. Test plug with EPDM self-sealing rubber inserts.

D. Thermometers at inlet and outlet of each remote domestic water chiller shall be one of the following:
 1. Sealed, bimetallic-actuated type.
 2. Direct-mounted, metal or plastic-case, vapor-actuated type.
 3. Test plug with EPDM self-sealing rubber inserts.

E. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.

B. Scale Range for Domestic Hot-Water Piping: 30 to 240 deg F.

3.6 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be one of the following:
 1. Sealed, direct-mounted, metal case.
 2. Sealed, direct-mounted, plastic case.
 3. Test plug with EPDM self-sealing rubber inserts.

B. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be one of the following:
 1. Sealed, direct-mounted, metal case.
 2. Sealed, direct-mounted, plastic case.
 3. Test plug with EPDM self-sealing rubber inserts.

C. Pressure gages at suction and discharge of each domestic water pump shall be one of the following:
 1. Sealed, direct-mounted, metal case.
 2. Sealed, direct-mounted, plastic case.
 3. Test plug with EPDM self-sealing rubber inserts.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 160 psi.

B. Scale Range for Domestic Water Piping: 0 to 200 psi.

END OF SECTION 220519
SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze angle valves.
 2. Bronze ball valves.
 5. Bronze swing check valves.
 7. Iron swing check valves with closure control.
 8. Iron, grooved-end swing check valves.
 13. Polypropylene valves.

B. Related Sections:
 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.
G. SWP: Steam working pressure.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.
C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set angle, gate, and globe valves closed to prevent rattling.
4. Set ball and plug valves open to minimize exposure of functional surfaces.
5. Set butterfly valves closed or slightly open.
6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
2. Handwheel: For valves other than quarter-turn types.
3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 10 plug valves, for each size square plug-valve head.
5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Grooved: With grooves according to AWWA C606.
4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

A. Class 125, Bronze Angle Valves with Nonmetallic Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. American Valve, Inc.
b. NIBCO INC.
2. Description:
a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 200 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: PTFE or TFE.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

2.3 BRONZE BALL VALVES

A. One-Piece, Reduced-Port, Bronze Ball Valves with Bronze Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. NIBCO INC.
2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Bronze.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

2.4 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. DeZurik Water Controls.
 g. Flo Fab Inc.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Legend Valve.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Norrisale; a Dover Corporation company.
 n. Red-White Valve Corporation.
 o. Spence Strainers International; a division of CIRCOR International, Inc.
 p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Aluminum bronze.

2.5 IRON, GROOVED-END BUTTERFLY VALVES

A. 175 CWP, Iron, Grooved-End Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kennedy Valve; a division of McWane, Inc.
 b. Shurjoint Piping Products.
 c. Tyco Fire Products LP; Grinnell Mechanical Products.
2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 175 psig.
 c. Body Material: Coated, ductile iron.
 e. Disc: Coated, ductile iron.
 f. Seal: EPDM.

2.6 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corporation.
 i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: PTFE or TFE.

2.7 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Composition.
 g. Seat Ring: Bronze.
 h. Disc Holder: Bronze.
 i. Disc: PTFE or TFE.
 j. Gasket: Asbestos free.

2.8 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. NIBCO INC.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
 h. Closure Control: Factory-installed, exterior lever and spring.
2.9 IRON, CENTER-GUIDED CHECK VALVES

A. Class 125, Iron, Globe, Center-Guided Check Valves with Resilient Seat:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. APCO Willamette Valve and Primer Corporation.
 c. Crispin Valve.
 d. DFT Inc.
 e. GA Industries, Inc.
 f. Hammond Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Sure Flow Equipment Inc.
 j. Val-Matic Valve & Manufacturing Corp.
2. Description:
 b. CWP Rating: 200 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: EPDM.

2.10 BRONZE GATE VALVES

A. Class 125, RS Bronze Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.
2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

2.11 BRONZE GLOBE VALVES

A. Class 125, Bronze Globe Valves with Nonmetallic Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. NIBCO INC.
 d. Red-White Valve Corporation.
2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

2.12 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Powell Valves.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.
3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
1. Shutoff Service: Ball, butterfly, or gate valves.
3. Throttling Service: Globe, ball, or butterfly valves.
4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with nonmetallic disc.
 b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring or iron, center-guided, resilient-seat check valves.
 c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 and Larger: Flanged ends.
7. For Grooved-End Copper Tubing and Steel Piping: Valve ends may be grooved.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends. Solder joint ball valves allowed up to NPS 3.
2. Bronze Angle Valves: Class 125, nonmetallic disc.
3. Ball Valves: One piece, reduced port, bronze with bronze trim.
4. Bronze Swing Check Valves: Class 125, nonmetallic disc.
5. Bronze Gate Valves: Class 125, RS.

B. Pipe NPS 2-1/2 and Larger:
1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
3. Iron, Grooved-End Butterfly Valves: 175 CWP.
4. Iron Swing Check Valves: Class 125, nonmetallic-to-metal seats.
5. Iron Swing Check Valves with Closure Control: Class 125, lever and spring.
6. Iron, Grooved-End Swing Check Valves: 300 CWP.
7. Iron, Center-Guided Check Valves: Class 125, resilient seat.

END OF SECTION 220523
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for plumbing system piping and equipment:
 1. Steel pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Fiberglass pipe hangers.
 4. Metal framing systems.
 5. Fiberglass strut systems.
 6. Thermal-hanger shield inserts.
 7. Fastener systems.
 8. Pipe stands.
 9. Pipe positioning systems.
 10. Equipment supports.

B. Related Sections include the following:
 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-suppression piping.
 3. Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
 4. Division 22 Section "Vibration for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Fiberglass pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Powder-actuated fastener systems.
 5. Pipe positioning systems.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 1. Trapeze pipe hangers. Include Product Data for components.
 2. Metal framing systems. Include Product Data for components.
 3. Fiberglass strut systems. Include Product Data for components.
 4. Pipe stands. Include Product Data for components.
 5. Equipment supports.
C. Welding certificates.

1.6 QUALITY ASSURANCE

B. Welding: Qualify procedures and personnel according to the following:
 1. AWS D1.1, "Structural Welding Code—Steel."
 2. AWS D1.2, "Structural Welding Code—Aluminum."
 3. AWS D1.4, "Structural Welding Code—Reinforcing Steel."
 4. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AAA Technology & Specialties Co., Inc.
 2. Bergen-Power Pipe Supports.
 4. Carpenter & Paterson, Inc.
 5. Empire Industries, Inc.
 6. ERICO/Michigan Hanger Co.
 7. Globe Pipe Hanger Products, Inc.
 8. Grinnell Corp.
 9. GS Metals Corp.
 11. PHD Manufacturing, Inc.
 12. PHS Industries, Inc.
 13. Piping Technology & Products, Inc.
 14. Tolco Inc.
 15. Pre-approved equal.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
3. GS Metals Corp.
5. Thomas & Betts Corporation.
6. Tolco Inc.
7. Unistrut Corp.; Tyco International, Ltd.
8. Pre-approved equal.

C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig-minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Carpenter & Paterson, Inc.
 2. ERICO/Michigan Hanger Co.
 3. PHS Industries, Inc.
 4. Pipe Shields, Inc.
 5. Rilco Manufacturing Company, Inc.
 6. Value Engineered Products, Inc.
 7. Pre-approved equal.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass with vapor barrier.

D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated or stainless steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
 f. Powers Fasteners.
 g. Pre-approved equal.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged; dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
2. Design Mix: 5000 PSI, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
10. Split Pipe-Ring with or without Tumbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar joist construction to attach to top flange of structural shape.
 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 6. C-Clamps (MSS Type 23): For structural shapes.
 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Fastener System Installation:
 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. Refer to Division 07 Section "Roof Accessories" for curbs.

F. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 22 Section "Plumbing Fixtures" for plumbing fixtures.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
L. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.

N. Insulated Piping: Comply with the following:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood inserts.
 6. Insert Material: Length at least as long as protective shield.
 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.
3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 220529
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032-inch; stainless steel, 0.025-inch; aluminum, 0.032-inch; or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch; stainless steel, 0.025-inch; aluminum, 0.032-inch; or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
1. Valve-tag schedule shall be included in operation and maintenance data.
2. Provide framed ready-to-hang water valve shut-off location directory.

2.5 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire or reinforced grommet and wire or string.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
1. Valve-Tag Size and Shape:
 b. Hot Water: 2 inches, round.
2. Valve-Tag Color:
 a. Cold Water: Natural or green.
 b. Hot Water: Natural or green.
3. Letter Color:
 a. Cold Water: Black or white.
 b. Hot Water: Black or white.
3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, flanges, valves, and specialties.
 3. Detail removable insulation at piping specialties, equipment connections, and access panels.
 4. Detail application of field-applied jackets and fitting covers.

C. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.
 2. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that product complies with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields.

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on piping segments that have satisfactory test results.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Plumbing Piping Insulation Schedule" for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Micro-Lok.
 b. Knauf Insulation; 1000-Degree Pipe Insulation.
 c. Owens Corning; Fiberglas Pipe Insulation.
 d. Pre-approved equal.
 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armadex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
 d. Pre-approved equal.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Foster Brand; 30-80/30-90.
 b. Vimasco Corporation; 749.
 c. Pre-approved equal.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Products: Subject to compliance with requirements, provide one of the following:
2.5 SEALANTS

A. Joint Sealants:
1. Joint Sealants for Flexible Elastomeric Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Brand; CP-76.
 b. Foster Brand; 30-45.
 c. Pittsburgh Corning Corporation; Pittseal 444.
 d. Pre-approved equal.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F.
5. Color: White or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 e. Pre-approved equal.
2. Adhesive: As recommended by jacket material manufacturer.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
1. Products: Subject to compliance with requirements, provide one of the following:
a. ABI; 428 AWF ASJ.
b. Avery Dennison Corporation; Fasson 0836.
c. Compac Corporation; 104 and 105.
d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
e. Pre-approved equal.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
 d. Pre-approved equal.
2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

2.9 SECUREMENTS
A. Staples for Hot Service Only: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

2.10 PROTECTIVE SHIELDING GUARDS
A. Protective Shielding Pipe Covers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Insul-Tect Products Co.; a subsidiary of MVG Molded Products.
 b. Plumberex.
 c. Truebro; a brand of IPS Corporation.
 d. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.
 e. Pre-approved equal.
2. Description: Manufactured plastic wraps for covering plumbing fixture hot-water supply and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, no penetrations of the insulation shall occur at hangers, supports, anchors, and other projections. Seal joints and seams with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer’s written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

C. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 8. For services, except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the overall thickness of pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Finish exposed surfaces with a PVC jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.8 FIELD QUALITY CONTROL

A. All insulation applications will be considered defective Work if inspection reveals noncompliance with requirements.

END OF SECTION 220719
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 2. Encasement for piping.
 4. Flexible connectors.
 5. Escutcheons.
 6. Sleeves and sleeve seals.
 7. Wall penetration systems.

B. Related Section:
 1. Division 22 Section "Facility Water Distribution Piping" for water-service piping and water meters outside the building from source to the point where water-service piping enters the building.

C. Reference Documents:
 2. CSA B137.11 - Polypropylene (PP-R) Pipe and Fittings for Pressure Applications.

D. Definitions:
 1. Definitions shall be in accordance with local plumbing codes and ASTM F 2389.

1.3 SUBMITTALS

A. Product Data: For the following products:
 1. Specialty valves.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Flexible connectors.
 5. Backflow preventers and vacuum breakers.
 7. Sleeves and sleeve seals.
 8. Water penetration systems.

C. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Fire-suppression-water piping.
 2. Domestic water piping.
 3. Compressed air piping.
 4. HVAC hydronic piping.

D. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 61 for potable domestic water piping and components.

C. Material shall be certified by NSF International as complying with NSF 14, NSF 61, and ASTM F 2389 or CSA B137.11.

D. Material shall comply with manufacturers specifications.

E. Special Engineered products shall be certified by NSF International as complying with NSF 14.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Architect, Construction Manager, or Owner no fewer than two days in advance of proposed interruption of water service.
 2. Do not proceed with interruption of water service without Architect's, Construction Manager's, or Owner's written permission.

1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
 5. Copper Pressure-Seal-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Elkhart Products Corporation; Industrial Division.
 2) NIBCO INC.
 3) Viega; Plumbing and Heating Systems.
 4) Pre-approved equal.
 b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 c. NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 6. Copper-Tube Extruded-Tee Connections:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) T-DRILL Industries Inc.
 2) Pre-approved equal.
 b. Description: Tee formed in copper tube according to ASTM F 2014.
 7. Grooved-Joint Copper-Tube Appurtenances:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Anvil International.
 2) Victaulic Company.
 3) Pre-approved equal.
 b. Copper Grooved-End Fittings: ASTM B 75 copper tube or ASTM B 584 bronze castings.
 c. Grooved-End-Tube Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.
B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 1. Standard-Pattern, Mechanical-Joint Fittings: AWWA C110, ductile or gray iron.
 2. Compact-Pattern, Mechanical-Joint Fittings: AWWA C153, ductile iron.
 a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 1. Standard-Pattern, Push-on-Joint Fittings: AWWA C110, ductile or gray iron.
 2. Compact-Pattern, Push-on-Joint Fittings: AWWA C153, ductile iron.

2.4 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.5 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105.

B. Form: Sheet or tube.

C. Material: LLDPE film of 0.008-inch minimum thickness or high-density, cross-laminated PE film of 0.004-inch minimum thickness.

D. Color: Black or natural.

2.6 SPECIALTY VALVES

A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.

B. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves, drain valves, backflow preventers, and vacuum breakers.

2.7 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.8 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Dielectric Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Hart Industries International, Inc.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. Zurn Plumbing Products Group; Wilkins Water Control Products.
 g. Pre-approved equal.
2. Description:
 a. Pressure Rating: 150 psig at 180 deg F.
 b. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Pre-approved equal.
2. Description:
 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating: 175 psig minimum.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 e. Pre-approved equal.
2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Calpico, Inc.
 b. Lochinvar Corporation.
 c. Pre-approved equal.
2. Description:
 a. Galvanized-steel coupling.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Female threaded.
d. Lining: Inert and noncorrosive, thermoplastic.

F. Dielectric Nipples:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Perfection Corporation; a subsidiary of American Meter Company.
 b. Precision Plumbing Products, Inc.
 c. Victaulic Company.
 d. Pre-approved equal.
2. Description:
 a. Electroplated steel nipple complying with ASTM F 1545.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Male threaded or grooved.
 d. Lining: Inert and noncorrosive, propylene.

2.9 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Flex-Hose Co., Inc.
2. Flexicraft Industries.
3. Flex Pression, Ltd.
4. Flex-Weld, Inc.
5. Hyspan Precision Products, Inc.
7. Metraflex, Inc.
8. Proco Products, Inc.
10. Unaflex, Inc.
11. Universal Metal Hose; a Hyspan company.
12. Pre-approved equal.

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
2. End Connections NPS 2) and Smaller: Threaded copper pipe or plain-end copper tube.
3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

2.10 ESCUTCHEONS

A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.
B. One Piece, Cast Brass: Polished, chrome-plated finish with setscrews.
D. One Piece, Stamped Steel: Chrome-plated finish with setscrew.
E. Split Casting, Cast Brass: Polished, chrome-plated finish with concealed hinge and setscrew.
F. Split Plate, Stamped Steel: Chrome-plated finish with concealed hinge, setscrew.
G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
H. Split-Casting Floor Plates: Cast brass with concealed hinge.
2.11 SLEEVES

A. Cast-Iron Wall Pipes: Fabricated of cast iron, and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Molded-PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

D. Molded-PVC Sleeves: Permanent, with nailing flange for attaching to wooden forms.

E. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

F. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc-coated, with plain ends.

G. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
1. Underdeck Clamp: Clamping ring with setscrews.

2.12 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex, Inc.
4. Pipeline Seal and Insulator, Inc.
5. Pre-approved equal.

B. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.
1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel or stainless steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, or stainless steel of length required to secure pressure plates to sealing elements.

2.13 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install copper tubing under building slab according to CDA’s "Copper Tube Handbook."
C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install underground copper tube and ductile-iron pipe in PE encasement according to ASTM A 674 or AWWA C105.

E. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

F. Install shutoff valve immediately upstream of each dielectric fitting.

G. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.

H. Install domestic water piping level without pitch and plumb.

I. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

J. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

K. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

L. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

M. Install piping adjacent to equipment and specialties to allow service and maintenance.

N. Install piping to permit valve servicing.

O. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

P. Install piping free of sags and bends.

Q. Install fittings for changes in direction and branch connections.

R. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

S. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

T. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.

U. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
E. Pressure-Sealed Joints: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

F. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

G. Copper-Tubing Grooved Joints: Roll groove end of tube. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for roll-grooved joints.

H. Ductile-Iron-Piping Grooved Joints: Cut groove end of pipe. Assemble coupling with housing, gasket, lubricant, and bolts. Join ductile-iron pipe and grooved-end fittings according to AWWA C606 for ductile-iron-pipe, cut-grooved joints.

I. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

E. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.5 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. NPS 2 and Larger: Sleeve-type coupling.

3.6 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.
3.7 FLEXIBLE CONNECTOR INSTALLATION

A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.

B. Install bronze-hose flexible connectors in copper domestic water tubing.

3.8 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 6. NPS 6: 10 feet with 5/8-inch rod.
 7. NPS 8: 10 feet with 3/4-inch rod.

E. Install supports for vertical copper tubing every 10 feet.

F. Install vinyl-coated hangers for PEX piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 2 and Smaller: 32 inches with 3/8-inch rod.

G. Install hangers for vertical PEX piping every 48 inches

H. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.9 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.
3.10 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:
 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece or split casting, cast brass with polished chrome-plated finish.
 4. Bare Piping in Unfinished Service Spaces: One piece, cast brass.
 5. Bare Piping in Equipment Rooms: One piece, cast brass.
 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.11 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Permanent sleeves are not required for holes formed by removable PE sleeves.

D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

E. Install sleeves in new partitions, slabs, and walls as they are built.

F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.

G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.

H. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals specified in this Section.

I. Seal space outside of sleeves in concrete slabs and walls with grout.

J. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.

K. Install sleeve materials according to the following applications:
 1. Sleeves for Piping Passing through Concrete Floor Slabs: Molded PE, molded PVC, or steel pipe.
 2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas:
 Steel pipe or stack sleeve fittings.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 3. Sleeves for Piping Passing through Concrete Roof Slabs: Molded PE, molded PVC, or steel pipe.
 4. Sleeves for Piping Passing through Exterior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Cast-iron wall pipe sleeves for pipes NPS 6 and larger.
 c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
 d. Do not use sleeves when wall penetration systems are used.
 5. Sleeves for Piping Passing through Interior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.
L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestop materials and installations.

3.12 SLEEVE SEAL INSTALLATION
A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.
B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.13 WALL PENETRATION SYSTEM INSTALLATION
A. Install wall penetration systems in new, exterior concrete walls.
B. Assemble wall penetration system components with sleeve pipe. Install so that end of sleeve pipe and face of housing are flush with wall. Adjust locking devices to secure sleeve pipe in housing.

3.14 IDENTIFICATION
A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
B. Label pressure piping with system operating pressure.

3.15 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unenclosed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.
3.16 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot
 water in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and
 are clean and ready for use.
 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.17 CLEANING

A. Clean and disinfect potable and non-potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not
 prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate
 with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate
 and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing
 time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological
 examination shows contamination.
 B. Clean non-potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow
 procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological
 examination shows contamination.
 C. Prepare and submit reports of purging and disinfecting activities.
 D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.18 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below
 unless otherwise indicated.
 B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
 C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
 D. Under-building-slab, domestic water, building service piping, NPS 3 and smaller, shall be one of the following:
 1. Soft copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper solder-joint fittings; and brazed
 joints.
 E. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be one of the following:
1. Mechanical-joint, ductile-iron pipe; standard- or compact-pattern mechanical-joint fittings; and mechanical joints.
2. Push-on-joint, ductile-iron pipe; standard- or compact-pattern push-on-joint fittings; and gasketed joints.

F. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and brazed or soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

G. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and brazed or soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

H. Aboveground domestic water piping, NPS 5 to NPS 8, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper solder-joint fittings; and brazed or soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; grooved-joint copper-tube appurtenances; and grooved joints.

3.19 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following domestic water piping specialties:
 1. Vacuum breakers.
 2. Backflow preventers.
 5. Temperature-actuated water mixing valves.
 7. Outlet boxes.
 8. Hose bibbs.
 9. Wall hydrants.
 10. Drain valves.
 12. Air vents.
 13. Trap-seal primer valves.
 14. Trap-seal primer systems.

B. Related Sections include the following:
 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Division 22 Section "Domestic Water Piping" for water meters.
 3. Division 22 Section "Domestic Water Filtration Equipment" for water filters in domestic water piping.
 4. Division 22 Section "Healthcare Plumbing Fixtures" for thermostatic mixing valves for sitz baths, thermostatic mixing-valve assemblies for hydrotherapy equipment, and outlet boxes for dialysis equipment.
 5. Division 22 Section "Emergency Plumbing Fixtures" for water tempering equipment.
 6. Division 22 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."
PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. FEBCO; SPX Valves & Controls.
 e. Rain Bird Corporation.
 f. Toro Company (The); Irrigation Div.
 g. Watts Industries, Inc.; Water Products Div.
 h. Zurn Plumbing Products Group; Wilkins Div.
 i. Pre-approved equal.
 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 5. Inlet and Outlet Connections: Threaded.
 6. Finish: Rough bronze or chrome plated where in public view.

B. Hose-Connection Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products, Inc.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 h. Woodford Manufacturing Company.
 i. Zurn Plumbing Products Group; Light Commercial Operation.
 j. Zurn Plumbing Products Group; Wilkins Div.
 k. Pre-approved equal.
 5. Finish: Chrome or nickel plated or rough bronze where in public view.

C. Pressure Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Toro Company (The); Irrigation Div.
 g. Zurn Plumbing Products Group; Wilkins Div.
 h. Pre-approved equal.
 3. Operation: Continuous-pressure applications.
 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
 5. Accessories:
 a. Valves: Ball type, on inlet and outlet.

D. Laboratory-Faucet Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Woodford Manufacturing Company.
 d. Zurn Plumbing Products Group; Wilkins Div.
 e. Pre-approved equal.
5. End Connections: Threaded.
6. Finish: Chrome plated.

E. Spill-Resistant Vacuum Breakers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Pre-approved equal.
3. Operation: Continuous-pressure applications.
4. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.2 BACKFLOW PREVENTERS

A. Intermediate Atmospheric-Vent Backflow Preventers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 d. Zurn Plumbing Products Group; Wilkins Div.
 e. Pre-approved equal.
2. Standard: ASSE 1012.
3. Operation: Continuous-pressure applications.
5. End Connections: Union, solder joint.

B. Reduced-Pressure-Principle Backflow Preventers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 d. Zurn Plumbing Products Group; Wilkins Div.
 e. Pre-approved equal.
3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through; vertical inlet, horizontal center section, and vertical outlet; or vertical where space constraints require, flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

C. Double-Check Backflow-Prevention Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 d. Zurn Plumbing Products Group; Wilkins Div.
 e. Pre-approved equal.
3. Operation: Continuous-pressure applications, unless otherwise indicated.
4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

D. **Beverage-Dispensing-Equipment Backflow Preventers**:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Zurn Plumbing Products Group; Wilkins Div.
 d. Pre-approved equal.
 3. Operation: Continuous-pressure applications.

E. **Dual-Check-Valve Backflow Preventers**:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 d. Zurn Plumbing Products Group; Wilkins Div.
 e. Pre-approved equal.
 3. Operation: Continuous-pressure applications.

F. **Carbonated-Beverage-Dispenser, Dual-Check-Valve Backflow Preventers**:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Lancer Corporation.
 d. Pre-approved equal.
 3. Operation: Continuous-pressure applications.

G. **Double-Check, Detector-Assembly Backflow Preventers**:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 d. Zurn Plumbing Products Group; Wilkins Div.
 e. Pre-approved equal.
 2. Standard: ASSE 1048 and FMG approved or UL listed.
 3. Operation: Continuous-pressure applications.
 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
 5. Body: Cast iron with interior lining complying with AWWA C550 or that is FDA approved.
 7. Configuration: Designed for horizontal, straight through; vertical inlet, horizontal center section, and vertical outlet; or vertical flow where space constraints require.
 8. Accessories:
 a. Valves: Outside screw and yoke gate-type with flanged ends on inlet and outlet.
 b. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

H. **Hose-Connection Backflow Preventers**:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
c. Woodford Manufacturing Company.
d. Pre-approved equal.
3. Operation: Up to 10-foot head of water back pressure.
4. Inlet Size: NPS 1/2 or NPS 3/4.
5. Outlet Size: Garden-hose thread complying with ASME B1.20.7.
6. Capacity: At least 3-gpm flow.

I. Backflow-Preventer Test Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 c. Flomatic Corporation.
 e. Zurn Plumbing Products Group; Wilkins Div.
 f. Pre-approved equal.
2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.3 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Watts Industries, Inc.; Water Products Div. for 4" valves and larger, no exceptions allowed.
 b. Wilkins, Cla-Val, Febco, or Conbraco for valves smaller than 4", no other manufacturer's allowed.
4. Body: Bronze with chrome-plated finish for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.

B. Water Control Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CLA-VAL Automatic Control Valves.
 b. Flomatic Corporation.
 c. OCV Control Valves.
 e. Watts Industries, Inc.; Watts ACV.
 f. Zurn Plumbing Products Group; Wilkins Div.
 g. Pre-approved equal.
2. Description: Pilot-operation, diaphragm-type, single-seated main water control valve.
3. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
4. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 a. Pattern: Angle- or globe-valve design.
 b. Trim: Stainless steel.
5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.4 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. ITT Industries; Bell & Gossett Div.
 c. NIBCO INC.
 d. TAC Americas.
 e. Taco, Inc.
 g. Pre-approved equal.
2. Type: Ball or Y-pattern globe valve with two readout ports and memory setting indicator.
3. Body: Brass or bronze.
4. Size: Same as connected piping, but not larger than NPS 2.
5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

B. Cast-Iron Calibrated Balancing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flo Fab Inc.
 c. ITT Industries; Bell & Gossett Div.
 d. NIBCO INC.
 e. TAC Americas.
 g. Pre-approved equal.
2. Type: Adjustable with Y-pattern globe valve, two readout ports, and memory-setting indicator.
3. Size: Same as connected piping, but not smaller than NPS 2-1/2.

C. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

D. Memory-Stop Balancing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Div.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corp.
 i. Pre-approved equal.
2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
3. Pressure Rating: 400-psig minimum CWP.
4. Size: NPS 2 or smaller.
5. Body: Copper alloy.
6. Port: Standard or full port.
7. Ball: Chrome-plated brass.
8. Seats and Seals: Replaceable.
9. End Connections: Solder joint or threaded.

2.5 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations, unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
 c. Strainers NPS 5 and Larger: 0.10 inch.

2.6 OUTLET BOXES

A. Clothes Washer Outlet Boxes:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Guy Gray Manufacturing Co., Inc.
 c. IPS Corporation.
 d. LSP Products Group, Inc.
 e. Oatey.
 f. Plastic Oddities; a division of Diverse Corporate Technologies.
 g. Symmons Industries, Inc.
h. Watts Industries, Inc.; Water Products Div.
i. Whitehall Manufacturing; a div. of Acorn Engineering Company.
j. Zurn Plumbing Products Group; Light Commercial Operation.
k. Pre-approved equal.

4. Faucet: Combination, valved fitting or separate hot- and cold-water, valved fittings complying with ASME A112.18.1. Include garden-hose thread complying with ASME B1.20.7 on outlets.
5. Supply Shutoff Fittings: NPS 1/2 gate, globe, or ball valves and NPS 1/2 copper, water tubing.
6. Drain: NPS 2 standpipe and P-trap for direct waste connection to drainage piping.
7. Inlet Hoses: Two 60-inch-long, rubber household clothes washer inlet hoses with female, garden-hose-thread couplings. Include rubber washers.
8. Drain Hose: One 48-inch-long, rubber household clothes washer drain hose with hooked end.

B. Icemaker Outlet Boxes:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Guy Gray Manufacturing Co., Inc.
c. IPS Corporation.
d. LSP Products Group, Inc.
e. Oatey.
f. Plastic Oddities; a division of Diverse Corporate Technologies.
g. Pre-approved equal.
4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
5. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.7 HOSE BIBBS

A. Hose Bibbs:
4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
9. Finish for Service Areas: Rough bronze or chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
12. Operation for Service Areas: Operating key.
14. Include operating key with each operating-key hose bibb.
15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.8 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. MIFAB, Inc.
c. Prier Products, Inc.
e. Tyler Pipe; Wade Div.
f. Watts Drainage Products Inc.
g. Woodford Manufacturing Company.
h. Zurn Plumbing Products Group; Light Commercial Operation.
i. Zurn Plumbing Products Group; Specification Drainage Operation.
j. Pre-approved equal.
4. Operation: Loose key.
5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Inlet: NPS 3/4 or NPS 1.
7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
8. Box: Deep, flush mounting with cover.
12. Operating Keys(s): One with each wall hydrant.

B. Vacuum Breaker Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products, Inc.
 b. Mansfield Plumbing Products LLC.
 d. Prier Products, Inc.
 e. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Pre-approved equal.
2. Standard: ASSE 1019, Type A or Type B.
3. Type: Freeze-resistant, automatic draining with integral air-inlet valve.
4. Classification: Type A, for automatic draining with hose removed or Type B, for automatic draining with hose removed or with hose attached and nozzle closed.
7. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.

2.9 POST HYDRANTS

A. Nonfreeze, Draining-Type Post Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. Prier Products, Inc.
 c. Simmons Manufacturing Co.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
 j. Pre-approved equal.
2. Standard: ASME A112.21.3M.
3. Type: Nonfreeze, exposed-outlet post hydrant.
4. Operation: Loose key.
5. Casing and Operating Rod: Of at least length required for burial of valve below frost line.
9. Drain: Designed with hole to drain into ground when shut off.
10. Vacuum Breaker: Nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011; and garden-hose thread complying with ASME B1.20.7 on outlet.
11. Operating Key(s): Two with each loose-key-operation wall hydrant.

2.10 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.11 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. PPP Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products Inc.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
 j. Pre-approved equal.
3. Type: Metal bellows or copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.12 AIR VENTS

A. Bolted-Construction Automatic Air Vents:
1. Body: Bronze.
2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
3. Float: Replaceable, corrosion-resistant metal.

B. Welded-Construction Automatic Air Vents:
2. Pressure Rating: 150-psig minimum pressure rating.
3. Float: Replaceable, corrosion-resistant metal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
3. Do not install bypass piping around backflow preventers.
4. Install backflow preventer between 12" above floor and 60" above floor so it is easily accessible without the use of a ladder.
C. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

D. Install water control valves with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.

E. Install balancing valves in locations where they can easily be adjusted.

F. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install thermometers and water regulators if specified.
 2. Install cabinet-type units recessed in or surface mounted on wall as specified.

G. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.

H. Install outlet boxes recessed in wall. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."

I. Install hose stations with check stops or shutoff valves on inlets and with thermometer on outlet.
 1. Install shutoff valve on outlet if specified.
 2. Install cabinet-type units recessed in or surface mounted on wall as specified. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."

J. Install ground hydrants with 1 cu. yd. of crushed gravel around drain hole. Set ground hydrants with box flush with grade.

K. Install draining-type post hydrants with 1 cu. yd. of crushed gravel around drain hole. Set post hydrants in concrete paving or in 1 cu. ft. of concrete block at grade.

L. Install nonfreeze, nondraining-type post hydrants set in concrete or pavement.

M. Install freeze-resistant yard hydrants with riser pipe set in concrete or pavement. Do not encase canister in concrete.

N. Install water hammer arresters in water piping according to PDI-WH 201.

O. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.
 2. Intermediate atmospheric-vent backflow preventers.
 3. Reduced-pressure-principle backflow preventers.
 5. Carbonated-beverage-machine backflow preventers.
 7. Reduced-pressure-detector, fire-protection backflow-preventer assemblies.
10. Calibrated balancing valves.
11. Primary, thermostatic, water mixing valves.
14. Primary water tempering valves.
15. Outlet boxes.
17. Supply-type, trap-seal primer valves.
18. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:
 1. Test each reduced-pressure-principle backflow preventer, double-check backflow-prevention assembly and double-check, detector-assembly backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes the following soil and waste, sanitary drainage and vent piping inside the building:
 1. Pipe, tube, and fittings.
 2. Special pipe fittings.

1.2 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

1.3 SUBMITTALS
A. Field quality-control inspection and test reports.

1.4 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; and "NSF-drain" for plastic drain piping.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
B. Hubless Cast-Iron Pipe and Fittings: ASTM A 888 or CISPI 301.
 1. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 a. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS
A. Special pipe fittings with pressure ratings at least equal to piping pressure ratings may be used in applications below, unless otherwise indicated.
B. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.
C. Aboveground, soil, waste, and vent piping shall be the following:
 1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.

3.2 PIPING INSTALLATION
A. Basic piping installation requirements are specified in Section "Basic Mechanical Materials and Methods."
B. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.
C. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Section "Basic Mechanical Materials and Methods."

D. Install wall penetration system at each service pipe penetration through foundation wall. Make installation watertight. Wall penetration systems are specified in Section "Basic Mechanical Materials and Methods."

E. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

F. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

G. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

H. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

I. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

J. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.3 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Section "Basic Mechanical Materials and Methods."

 1. Gasketed Joints: Make with rubber gasket matching class of pipe and fittings.
 2. Hubless Joints: Make with rubber gasket and sleeve or clamp.

3.4 HANGER AND SUPPORT INSTALLATION

A. Seismic-restraint devices are specified in Section "Mechanical Vibration and Seismic Controls."

B. Pipe hangers and supports are specified in Section "Hangers and Supports." Install the following:
 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs: According to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Install supports according to Section "Hangers and Supports."

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6: 60 inches with 3/4-inch rod.
 5. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

A. Connect soil and waste piping to existing sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

B. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code. Refer to Section "Plumbing Fixtures."
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code. Refer to Section "Plumbing Specialties."
 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

3.6 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction.
 1. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 2. Prepare reports for tests and required corrective action.

3.7 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221316
SECTION 221319 - SANITARY AND WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following drainage piping specialties:
 1. Cleanouts.
 2. Floor drains.
 3. Miscellaneous drainage piping specialties.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for grease interceptors.

1.3 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

A. Exposed Cast-Iron Cleanouts:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 3. Basis-of-Design Product: Subject to compliance with requirements, provide a product by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
 5. Size: Same as connected drainage piping
 7. Closure: Countersunk, brass plug.
 8. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Cast-Iron Floor Cleanouts:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 3. Basis-of-Design Product: Subject to compliance with requirements, provide a product by one of the following:
 b. Oatey.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Zurn Plumbing Products Group; Light Commercial Operation.
 h. Zurn Plumbing Products Group; Specification Drainage Operation.
 5. Size: Same as connected branch.
 6. Type: Heavy-duty, adjustable housing.
 7. Body or Ferrule: Cast iron.
10. Closure: Brass plug with straight threads and gasket.
11. Adjustable Housing Material: Cast iron with threads.
13. Frame and Cover Shape: Round.
15. Riser: ASTM A 74, Extra-Heavy class, cast-iron drainage pipe fitting and riser to cleanout.

C. Cast-Iron Wall Cleanouts:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide a product by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
4. Standard: ASME A112.36.2M. Include wall access.
5. Size: Same as connected drainage piping.
6. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
7. Closure: Countersunk, brass plug.
8. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS
A. Cast-Iron Floor Drains:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide a product by one of the following:
 a. Commercial Enameling Co.
 b. Josam Company; Josam Div.
 c. MIFAB, Inc.
 d. Prier Products, Inc.
 e. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 f. Tyler Pipe; Wade Div.
 g. Watts Drainage Products Inc.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
4. Floor drains shall be as scheduled on the drawings.

2.3 MISCELLANEOUS DRAINAGE PIPING SPECIALTIES
A. Open Drains:
1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
2. Size: Same as connected waste piping with increaser fitting of size indicated.

B. Deep-Seal Traps:
1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch-minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

C. Air-Gap Fittings:
1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

D. Sleeve Flashing Device:
1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
2. Size: As required for close fit to riser or stack piping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Basic Plumbing Materials and Methods" for piping joining materials, joint construction, and basic installation requirements.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 90 degrees.
 3. Locate at minimum intervals per local code requirements.
 4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Assemble open drain fittings and install with top of hub 1 inch above floor.

G. Install deep-seal traps on floor drains and other waste outlets, if indicated.

H. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

I. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment to allow service and maintenance.

3.3 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 223400 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of gas-fired, tankless domestic-water heater, from manufacturer.

B. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

C. Source quality-control reports.

D. Field quality-control reports.

E. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.

C. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects."
1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Periods: From date of Substantial Completion.
 a. Gas-Fired, Tankless, Domestic-Water Heaters:
 1) Heat Exchanger: Five years.
 2) Controls and Other Components: Three years.

PART 2 - PRODUCTS

2.1 GAS-FIRED, TANKLESS, DOMESTIC-WATER HEATERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Rinnai
 2. Aerco.
 3. Lochinvar.
 4. Pre-approved Equal

C. Construction: Copper piping or tubing complying with NSF 61 barrier materials for potable water, without storage capacity.
 3. Heat Exchanger: Copper tubing.
 4. Insulation: Comply with ASHRAE/IESNA 90.1.
 5. Jacket: Metal, with enameled finish, or plastic.
 7. Automatic Ignition: Manufacturer's proprietary system for automatic, gas ignition.
 8. Temperature Control: Adjustable thermostat.

D. Capacity and Characteristics:
 1. Refer to drawings.

E. Minimum Vent Diameter: install per manufacturer's recommendations.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL Inc.
 b. Flexcon Industries.
 c. Honeywell International Inc.
 d. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 e. State Industries.
 f. Taco, Inc.
 g. Pre-approved equal.
 2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.

c. Air-Charging Valve: Factory installed.

4. Capacity and Characteristics:
 a. Working-Pressure Rating: 150 psig
 b. Capacity Acceptable: unless noted otherwise on drawings, size per manufacturer's recommendations.
 c. Air Precharge Pressure: unless noted otherwise on drawings, precharge per manufacturer's recommendations.

B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

D. Heat-Trap Fittings: ASHRAE 90.2.

E. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-, butterfly-, or gate-type shutoff valves to isolate each domestic-water heater and calibrated balancing valves to provide balanced flow through each domestic-water heater.
 1. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 220523 "General-Duty Valves for Plumbing Piping."
 2. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."

G. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include pressure rating as required to match gas supply.

I. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
 2. Oil-Fired, Domestic-Water Heaters: ASME rated and stamped.

J. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.
 2. Oil-Fired, Domestic-Water Heaters: ASME rated and stamped.

K. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.

L. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

M. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test domestic-water heaters to minimum of one and one-half times pressure rating before shipment.
C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

 1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
 2. Maintain manufacturer's recommended clearances.
 3. Arrange units so controls and devices that require servicing are accessible.
 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 7. Install anchor bolts to elevations required for proper attachment to supported equipment.
 8. Anchor domestic-water heaters to substrate.

B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping.

C. Install gas-fired, domestic-water heaters according to NFPA 54.
 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
 3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
 4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves as specified.

D. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

E. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."

F. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

G. Assemble and install inlet and outlet piping manifold kits for multiple domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each domestic-water heater outlet. Comply with requirements for valves specified in Section 220523 "General-Duty Valves for Plumbing Piping," and comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

H. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.

I. Fill domestic-water heaters with water.
J. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."
B. Comply with requirements for fuel-oil piping specified in Section 231113 "Facility Fuel-Oil Piping."
C. Comply with requirements for gas piping as specified.
D. Drawings indicate general arrangement of piping, fittings, and specialties.
E. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification as specified.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
B. Domestic-water heaters will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, tankless domestic-water heaters.

END OF SECTION 223400
SECTION 224000 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Faucets for lavatories and sinks.
 2. Flushometers.
 3. Toilet seats.
 4. Protective shielding guards.
 5. Fixture supports.
 7. Urinals.
 8. Lavatories.

1.2 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
C. FRP: Fiberglass-reinforced plastic.
D. PMMA: Polymethyl methacrylate (acrylic) plastic.
E. PVC: Polyvinyl chloride plastic.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
D. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
E. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.
F. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
5. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
9. Vitreous-China Fixtures: ASME A112.19.2M.

G. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
 1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
 2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
 5. Hose-Connection Vacuum Breakers: ASSE 1011.

H. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
 2. Brass and Copper Supplies: ASME A112.18.1.

I. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 1. Disposers: ASSE 1008 and UL 430.
 7. Off-Floor Fixture Supports: ASME A112.6.1M.

PART 2 - PRODUCTS

2.1 LAVATORY FAUCETS

A. Lavatory Faucets:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Standard Companies, Inc.
 b. Bradley Corporation.
 c. Chicago Faucets.
 d. Delta Faucet Company.
 e. Eljer.
 f. Elkay Manufacturing Co.
 g. Kohler Co.
 h. Moen, Inc.
 i. T & S Brass and Bronze Works, Inc.
 j. Zurn Plumbing Products Group; Commercial Brass Operation.
 k. Peerless.
 2. Description: See schedule on the drawings.
2.2 FLUSHOMETERS

A. Flushometers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sloan Valve Company.
 b. Zurn Plumbing Products Group; Commercial Brass Operation.
 c. TOTO USA, Inc.
 2. Description: See schedule on the drawings.

2.3 TOILET SEATS

A. Toilet Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Standard Companies, Inc.
 b. Bemis Manufacturing Company.
 c. Centoco Manufacturing Corp.
 d. Church Seats.
 e. Eljer.
 f. Kohler Co.
 g. Olsonite Corp.
 2. Description: Toilet seat for water-closet-type fixture.
 a. Material: Molded, solid plastic with antimicrobial agent.
 b. Configuration: Open front without cover.
 c. Size: Elongated.
 d. Hinge Type: SS, self-sustaining.
 e. Class: Heavy-duty commercial.

2.4 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Engineered Brass Co.
 b. Insul-Tect Products Co.; a Subsidiary of MVG Molded Products.
 c. McGuire Manufacturing Co., Inc.
 d. Plumberex Specialty Products Inc.
 e. TCI Products.
 f. TRUEBRO, Inc.
 g. Zurn Plumbing Products Group; Tubular Brass Plumbing Products Operation.
 2. Description: Manufactured plastic wraps for covering plumbing fixture hot-water supply and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

2.5 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Company.
 2. MIFAB Manufacturing Inc.
 4. Tyler Pipe; Wade Div.
 5. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.

B. Water-Closet Supports:
 1. Description: Combination carrier designed for accessible or standard mounting height of wall-mounting, water-closet-type fixture. Include single or double, vertical or horizontal, hub-and-spigot or hubless waste fitting as required for piping arrangement; faceplates; couplings with gaskets; feet; and fixture bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space.

C. Urinal Supports:
 1. Description: Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture for wall-mounting, urinal-type fixture. Include steel uprights with feet.

D. Lavatory Supports:
1. Description: Type II, lavatory carrier with concealed arms and tie rod for wall-mounting, lavatory-type fixture. Include steel uprights with feet.

2.6 WATER CLOSETS

A. Water Closets:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Standard Companies, Inc.
 b. Crane Plumbing, L.L.C./Fiat Products.
 c. Eljer.
 d. Kohler Co.
 e. Gerber.
 f. Sloan.
2. Description: See schedule on the drawings.

2.7 URINALS

A. Urinals:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Standard Companies, Inc.
 b. Crane Plumbing, L.L.C./Fiat Products.
 c. Eljer.
 d. Kohler Co.
 e. Sloan.
2. Description: See schedule on the drawings.

2.8 LAVATORIES

A. Lavatories:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Standard Companies, Inc.
 b. Eljer.
 c. Kohler Co.
2. Description: See schedule on the drawings.
 a. Drain Piping: NPS 1-1/4 by NPS 1-1/2 chrome-plated, cast-brass P-trap; NPS 1-1/2, 0.045-inch-thick tubular brass waste to wall; and wall escutcheon.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers’ written instructions.

B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.

C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.

D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.

E. Install wall-mounting fixtures with tubular waste piping attached to supports.

F. Install fixtures level and plumb according to roughing-in drawings.
G. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.

H. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

I. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

J. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.

K. Install toilet seats on water closets.

L. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

M. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

N. Install shower flow-control fittings with specified maximum flow rates in shower arms.

O. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

P. Install disposer in outlet of each sink indicated to have disposer. Install switch where indicated or in wall adjacent to sink if location is not indicated.

Q. Install hot-water dispensers in back top surface of sink or in countertop with spout over sink.

R. Install escutcheons at piping wall and ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Section "Basic Mechanical Materials and Methods."

S. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Section "Joint Sealants."

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding."

D. Connect wiring according to Division 26 Section "Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

E. Install fresh batteries in sensor-operated mechanisms.
3.4 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224000
SECTION 224700 - DRINKING FOUNTAINS/WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following drinking fountains/water coolers and related components:
 1. Pressure water coolers.
 2. Water-station water coolers.
 4. Fixture supports.

1.3 DEFINITIONS

A. Accessible Drinking Fountain/Water Cooler: Fixture that can be approached and used by people with disabilities.
B. Cast Polymer: Dense, cast-filled-polymer plastic.
C. Drinking Fountain: Fixture with nozzle for delivering stream of water for drinking.
D. Fitting: Device that controls flow of water into or out of fixture.
E. Fixture: Drinking fountain or water cooler unless one is specifically indicated.
F. Remote Water Cooler: Electrically powered equipment for generating cooled drinking water.
G. Water Cooler: Electrically powered fixture for generating and delivering cooled drinking water.

1.4 SUBMITTALS

A. Product Data: For each fixture indicated. Include rated capacities, furnished specialties, and accessories.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For fixtures to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS

A. Water Coolers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elkay Manufacturing Co.
 b. Halsey Taylor.
 2. Description: ARI 1010, Type PB, pressure with bubbler, Style RE, recessed water cooler.
 a. Cabinet: All stainless steel.
 b. Bubbler: One, with adjustable stream regulator, located on deck for each of two bowls.
 c. Control: Push button or bar.
 d. Supply: NPS 3/8 with ball, gate, or globe valve.
 e. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
 f. Drain: Grid with NPS 1-1/4 minimum horizontal waste and trap complying with ASME A112.18.2.
 g. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 1) Capacity: 8 gph of 50 deg F cooled water from 80 deg F inlet water and 90 deg F ambient air temperature.
 h. Ventilation Grille: Stainless steel, located below fountain.
 i. Support: Mounting frame for attaching to substrate.
 3. See Schedule on Drawings.

2.2 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Co.
 2. MIFAB Manufacturing, Inc.
 4. Tyler Pipe; Wade Div.
 5. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.

B. Description: ASME A112.6.1M, water cooler carriers. Include vertical, steel uprights with feet and tie rods and bearing plates with mounting studs matching fixture to be supported.
 1. Type I: Hanger-type carrier with two vertical uprights.
 2. Type II: Bilevel, hanger-type carrier with three vertical uprights.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before fixture installation. Verify that sizes and locations of piping and types of supports match those indicated.

B. Examine walls and floors for suitable conditions where fixtures are to be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 APPLICATIONS

A. Use carrier off-floor supports for wall-mounting fixtures, unless otherwise indicated.
B. Use mounting frames for recessed water coolers, unless otherwise indicated.
C. Use chrome-plated brass or copper tube, fittings, and valves in locations exposed to view. Plain copper tube, fittings, and valves may be used in concealed locations.

3.3 INSTALLATION

A. Install off-floor supports affixed to building substrate and attach wall-mounting fixtures, unless otherwise indicated.
B. Install mounting frames affixed to building construction and attach recessed water coolers to mounting frames, unless otherwise indicated.
C. Install fixtures level and plumb. For fixtures indicated for children, install at height required by authorities having jurisdiction.
D. Install water-supply piping with shutoff valve on supply to each fixture to be connected to water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
E. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
F. Install pipe escutcheons at wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding pipe fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
G. Seal joints between fixtures and walls and floors using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.4 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.5 FIELD QUALITY CONTROL

A. Water Cooler Testing: After electrical circuitry has been energized, test for compliance with requirements. Test and adjust controls and safeties.
 1. Remove and replace malfunctioning units and retest as specified above.
 2. Report test results in writing.

3.6 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.
B. Adjust water cooler temperature settings.

3.7 CLEANING

A. After completing fixture installation, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

END OF SECTION 224700
SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
4. Mechanical sleeve seals.
5. Sleeves.
7. Equipment installation requirements common to equipment sections.
8. Painting and finishing.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:

1. CPVC: Chlorinated polyvinyl chloride plastic.
2. PE: Polyethylene plastic.
3. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Transition fittings.
2. Dielectric fittings.
3. Mechanical sleeve seals.
4. Escutcheons.

B. Welding certificates.
1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

H. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

I. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Eslon Thermoplastics.

B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Thompson Plastics, Inc.

C. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 1. Manufacturers:
 a. NIBCO INC.
 b. NIBCO, Inc.; Chemtrol Div.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.
 g. Zum Industries, Inc.; Wilkins Div.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 1. Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 1. Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.

G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Type: With set screw and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw, and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 h. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed hinge and set screw.
 i. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 j. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw.
k. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 1) Seal space outside of sleeve fittings with grout.
 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

R. Verify final equipment locations for roughing-in.

S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 4. PVC Nonpressure Piping: Join according to ASTM D 2855.

J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 5. Install shutoff valves on supply and return piping of equipment.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

A. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

C. Field Welding: Comply with AWS D1.1.
3.7 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

END OF SECTION 230500
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer’s factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F.

I. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.
2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230548 - VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Spring hangers.
 2. Restrained isolation roof-curb rails.

B. Related Requirements:
 1. Section 210548 "Vibration Controls for Fire Suppression" for devices for fire-suppression equipment and systems.
 2. Section 220548 "Vibration Controls for Plumbing" for devices for plumbing equipment and systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required.

B. Shop Drawings:
 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation device.
 1. Include design calculations and details for selecting vibration isolators and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the manufacturer’s qualified professional engineer responsible for their preparation.
 a. Provide approved submittals of all equipment and systems required to have seismic and wind restraint to the seismic restraint provider for use in making calculations and selecting the appropriate seismic restraint devices and systems.
 2. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation required to select vibration isolators and for designing vibration isolation bases.
 3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure and spring deflection changes. Include certification that riser system was examined for excessive stress and that none exists.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For situations where limited space necessitates maximum utilization for efficient installation of different components, show coordination of vibration isolation device installation and seismic bracing for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Field quality-control reports.
1.5 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 GENERAL

A. Select vibration isolating units for the lowest operating speed of equipment, so designed that natural frequency of equipment and base mass is not less than 1.5 times the lowest operating frequency of the moving equipment, but not a multiple or harmonic of the base frequency. Furnish vibration isolation producing a uniform loading and deflection even when equipment weight is not evenly distributed, vibration isolation shall be stable during starting and stopping of equipment without excessive traverse and eccentric movement of equipment.

B. The installed vibration isolation system for each floor or ceiling mounted item of equipment shall have a maximum lateral motion under equipment start up and shut down conditions of 1/4 inch. Motions in excess shall be restrained by approved spring type mounting.

C. The type of isolation, base, and minimum static deflection shall be as required for each specific equipment application, but not less than that specified herein when supported on a solid concrete structural slab having a thickness of not less than four (4) inches. Should vibration isolators installed for the equipment prove inadequate to prevent transmission of equipment vibrations to the building structure or limit equipment vibration originated noise in the building spaces to acceptable levels, the isolators shall be replaced with units having the largest deflection that can be practically installed.

D. All springs installed out-of-doors shall be cadmium-plated, zinc electroplated or powder-coated after fabrication. Hardware and other metal parts shall be cadmium-plated or galvanized. Galvanizing shall meet ASTM Salt Spray Test Standards and Federal Test Standard No. 14.

E. All isolators installed out-of-doors shall have base plates with bolt holes for fastening the isolators to the support members.

2.2 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation Co., Inc.
 h. Vibration Mountings & Controls/Korfund.
 i. Vibro-Acoustics, Inc.
 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod (where required).
 9. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.3 RESTRAINED ISOLATION ROOF-CURB RAILS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ace Mountings Co., Inc.
2. California Dynamics Corporation
4. Mason Industries, Inc.
5. Novia; A Division of C&P
6. Thybar Corporation

B. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand seismic and wind forces.

C. Upper Frame: The upper frame shall provide continuous support for equipment and shall be captive to resiliently resist seismic and wind forces.

D. Lower Support Assembly: The lower support assembly shall be formed sheet metal section containing adjustable and removable steel springs that support the upper frame. The lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly. Adjustable, restrained-spring isolators shall be mounted on elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.

E. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.

F. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.

G. Acoustical Barrier: The floating member of the roof curb shall have a perimeter angle cross members to support two layers of 5/8" waterproof sheetrock laid on with staggered joints. Sheetrock must surround ducts to provide a continuous sound break. This acoustical barrier shall be caulked to minimize sound transmission between the rooftop air handling unit and the building. Where the mechanical arrangement makes attachment to the floating member unfeasible, the barrier shall be attached at the highest practical elevation of the fixed curb with provision for 1" thick closed cell neoprene flexible seals around any ductwork. A 4-inch layer of 1.5 density fiberglass shall cover the entire solid roof surface under the unit. Ductwork shall be externally lined with sound absorbent material coated with a dampening compound such as Mason Industries MDC-10 or approved equal. Complete instructions shall be provided by the spring isolation curb manufacturer. Acoustical package shall be Mason Industries, Inc. Type RSC-dB or approved equal.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION CONTROL DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Division 03.

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Equipment Bases:
 1. Fill concrete inertia bases, after installing base frame, with 3000-psi concrete; trowel to a smooth finish.
 a. Cast-in-place concrete materials and placement requirements are specified in Division 3.
 2. Concrete Bases: Anchor equipment to concrete base according to supported equipment manufacturer's written instructions for seismic codes at Project site.
 a. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
b. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base and anchor into structural concrete floor.
c. Place and secure anchorage devices. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
d. Install anchor bolts to elevations required for proper attachment to supported equipment.
e. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
f. Cast-in-place concrete materials and placement requirements are specified in Division 3.

3.3 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. A representative of the isolation materials manufacturer shall inspect the completed system and report in writing any installation errors, improperly selected isolation or restraint devices, or other faults that could affect the performance of the system.

B. Prepare manufacturer's representative's test and inspection reports indicating all isolation as being properly installed or requiring correction. If corrections are required, include steps to be taken to properly complete the isolation work.

3.4 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

3.5 VIBRATION ISOLATION SCHEDULE

A. Roof Top Units
 1. Isolation Type: Spring Isolation Roof Curb
 2. Base Deflection: 2"

B. Roof Mounted Fans:
 1. Isolation Type: Restrained Isolation Roof-Curb Rail
 2. Base Deflection: 1.5"

C. Suspended Fan Coil Units:
 1. Isolation Type: Spring Hanger
 2. Deflection: 0.75"

D. Air-Cooled Condensers and Condensing Units (On Roof):
 1. Isolation Type: Restrained Isolation Roof-Curb Rail
 2. Deflection: 1.5"

END OF SECTION 230548
SECTION 230553 - HVAC SYSTEM IDENTIFICATION

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following mechanical identification materials and their installation:
 1. Equipment nameplates.
 2. Equipment markers.
 3. Equipment signs.
 4. Access panel and door markers.
 5. Duct markers.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 EQUIPMENT IDENTIFICATION DEVICES

A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment.
 1. Data:
 a. Manufacturer, product name, model number, and serial number.
 b. Capacity, operating and power characteristics, and essential data.
 c. Labels of tested compliances.
 2. Location: Accessible and visible.
 3. Fasteners: As required to mount on equipment.

B. Equipment Markers: Engraved, color-coded laminated plastic. Include contact-type, permanent adhesive.
 1. Terminology: Match schedules as closely as possible.
 2. Data:
 a. Name and plan number.
 b. Equipment service.
 c. Design capacity.
 d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
 3. Size: 2-1/2 by 4 inches for control devices, dampers, and valves; 4-1/2 by 6 inches for equipment.

C. Equipment Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated. Fabricate in sizes required for message. Provide holes for mechanical fastening.
 1. Data: Instructions for operation of equipment and for safety procedures.
 2. Engraving: Manufacturer's standard letter style, of sizes and with terms to match equipment identification.
 3. Thickness: 1/16 inch, unless otherwise indicated.
 4. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

D. Access Panel and Door Markers: 1/16-inch-thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch center hole for attachment.
 1. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

PART 3 - EXECUTION

3.1 APPLICATIONS, GENERAL

A. Products specified are for applications referenced in other Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option.
3.2 EQUIPMENT IDENTIFICATION

A. Install and permanently fasten equipment nameplates on each major item of mechanical equipment that does not have nameplate or has nameplate that is damaged or located where not easily visible. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment:
 1. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 2. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 3. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 4. Fans, blowers, primary balancing dampers, and mixing boxes.
 5. Air handling equipment.

B. Install equipment markers with permanent adhesive on or near each major item of mechanical equipment. Data required for markers may be included on signs, and markers may be omitted if both are indicated.
 1. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 2. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
 3. Locate markers where accessible and visible. Include markers for the following general categories of equipment:
 a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 b. Meters, gages, thermometers, and similar units.
 c. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 d. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 e. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 f. Fans, blowers, primary balancing dampers, and mixing boxes.
 g. Packaged HVAC central-station and zone-type units.
 h. Tanks and pressure vessels.
 i. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.

C. Install equipment signs with screws or permanent adhesive on or near each major item of mechanical equipment. Locate signs where accessible and visible.
 1. Identify mechanical equipment with equipment markers in the following color codes:
 a. Green: For cooling equipment and components.
 b. Yellow: For heating equipment and components.
 c. Orange: For combination cooling and heating equipment and components.
 d. Brown: For energy-reclamation equipment and components.
 2. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 3. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
 4. Include signs for the following general categories of equipment:
 a. Heat exchangers, coils, evaporators, heat recovery units, and similar equipment.
 b. Fans, blowers, primary balancing dampers, and mixing boxes.
 c. Packaged HVAC central-station and zone-type units.

D. Install access panel markers with screws on equipment access panels.

3.3 ADJUSTING AND CLEANING

A. Relocate mechanical identification materials and devices that have become visually blocked by other work.

B. Clean faces of mechanical identification devices and glass frames of valve schedules.

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.

1.2 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 ACTION SUBMITTALS

A. TAB Report: Documentation of work performed for ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
D. Certified TAB reports.
E. Sample report forms.
F. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.5 QUALITY ASSURANCE

A. TAB Firm Qualifications: Engage a TAB firm certified by NEBB or AABC.
B. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
1.6 PROJECT CONDITIONS

A. Partial Owner Occupancy: Owner will occupy completed areas of building during construction. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.

B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.8 WARRANTY

A. Special Guarantee: Provide a guarantee on NEBB or AABC forms stating that NEBB or AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee shall include the following provisions:
1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
1. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.

B. Examine approved submittal data of HVAC systems and equipment.

C. Examine Project Record Documents described in Division 1 Section "Project Record Documents."

D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.

F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.

G. Examine system and equipment test reports.

H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.

I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

K. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.

L. Examine strainers for clean screens and proper perforations.

M. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.

N. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

O. Examine system pumps to ensure absence of entrained air in the suction piping.

P. Examine equipment for installation and for properly operating safety interlocks and controls.

Q. Examine automatic temperature system components to verify the following:
1. Dampers, valves, and other controlled devices are operated by the intended controller.
2. Dampers and valves are in the position indicated by the controller.
3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
6. Sensors are located to sense only the intended conditions.
7. Sequence of operation for control modes is according to the Contract Documents.
8. Controller set points are set at indicated values.
9. Interlocked systems are operating.
10. Changeover from heating to cooling mode occurs according to indicated values.

R. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system readiness checks and prepare system readiness reports. Verify the following:
1. Permanent electrical power wiring is complete.
2. Hydronic systems are filled, clean, and free of air.
3. Automatic temperature-control systems are operational.
4. Equipment and duct access doors are securely closed.
5. Balance, smoke, and fire dampers are open.
6. Isolating and balancing valves are open and control valves are operational.
7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" or AABC's "National standards for Total System Balance" and this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.

C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, to show final settings.
3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.

E. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling unit components.

L. Check for proper sealing of air duct system.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.

2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.

4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

1. Measure airflow of submain and branch ducts.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.
1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
3. Measure total system airflow. Adjust to within indicated airflow.
4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
8. Record final fan-performance data.

3.7 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer, model, and serial numbers.
 4. Efficiency rating.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.
3.8 PROCEDURES FOR TEMPERATURE MEASUREMENTS

A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.

B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.

C. Measure outside-air, wet- and dry-bulb temperatures.

3.9 TEMPERATURE-CONTROL VERIFICATION

A. Verify that controllers are calibrated and commissioned.

B. Check transmitter and controller locations and note conditions that would adversely affect control functions.

C. Record controller settings and note variances between set points and actual measurements.

D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).

E. Check free travel and proper operation of control devices such as damper and valve operators.

F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.

G. Check the interaction of electrically operated switch transducers.

H. Check the interaction of interlock and lockout systems.

I. Check main control supply-air pressure and observe compressor and dryer operations.

J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.

K. Note operation of electric actuators using spring return for proper fail-safe operations.

3.10 TOLERANCES

A. Set HVAC system airflow and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: 0 to plus 5 percent.
 2. Air Outlets and Inlets: 0 to plus 10 percent.
 3. Cooling-Water Flow Rate: 0 to plus 10 percent.

3.11 FINAL REPORT

A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.

B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 1. Include a list of instruments used for procedures, along with proof of calibration.

C. Final Report Contents: In addition to certified field report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers’ test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 1. Title page.
 2. Name and address of TAB firm.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Engineer's name and address.
 7. Contractor's name and address.
 9. Signature of TAB firm who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
 12. Nomenclature sheets for each item of equipment.
 13. Data for terminal units, including manufacturer, type size, and fittings.
 14. Notes to explain why certain final data in the body of reports varies from indicated values.
 15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outside-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 1. Quantities of outside, supply, return, and exhaust airflow.
 2. Water and steam flow rates.
 3. Duct, outlet, and inlet sizes.
 4. Pipe and valve sizes and locations.
 5. Terminal units.

3.12 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following duct services:
 1. Low and medium pressure supply.
 2. Outdoor air.
 3. Relief air.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets or covering.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields.

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after any required ductwork pressure testing is complete. Insulation application may begin on segments that have satisfactory test results.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Duct Insulation Schedule for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Owens Corning; SOFTR All-Service Duct Wrap.

E. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Johns Manville; 800 Series Spin-Glas.
 c. Knauf Insulation; Insulation Board.
 d. Owens Corning; Fiberglas 700 Series.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Subject to compliance with requirements, provide one of the following:
 a. Childers Brand; CP-127.
 b. Eagle Bridges; 225.
 c. Foster Brand; 85-60/85-70.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Brand; CP-82.
 b. Eagle Bridges; 225.
 c. Foster Brand; 85-50.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-BARRIER Mastic: Water based; suitable for indoor use on below ambient services.
 1. Subject to compliance with requirements, provide one of the following:
 a. Foster Brand; 30-80/30-90.
 b. Vimasco Corporation; 749.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Brand; CP-50 AHV2.
 b. Foster Brand; 30-36.
 c. Vimasco Corporation; 713 and 714.
 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
 4. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. FSK Sealants:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Brand; CP-76.
 b. Eagle Bridges; 405.
 c. Foster Brand; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Color: Aluminum.
 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
2.8 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI; 491 AWF FSK.
 b. Avery Dennison Corporation; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 2. Width: 3 inches.
 3. Thickness: 6.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lb/inch in width.
 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.9 SECUREMENTS

A. Insulation Pins and Hangers:
 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Keep insulation materials dry during application and finishing.

E. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

F. Install insulation with least number of joints practical.

G. Where vapor barrier is indicated, seal joints, seams, and penetrations. No penetration in insulation is permitted at hangers, supports, and other projections.
 1. Install insulation continuously through hangers and supports.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

H. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

I. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive sealing tape.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

J. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

K. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

L. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Firestopping materials and fire-resistive joint sealers applicable for the installation.

C. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies.

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket or Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 3. Install capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides or bottom with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides or bottom with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 4. For ducts and plenums, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation.
3.6 FIELD QUALITY CONTROL

A. All insulation applications will be considered defective work if sample inspection reveals noncompliance with requirements.

3.7 DUCT INSULATION SCHEDULE

A. Refer to ductwork insulation schedule on drawings.

B. Items Not Insulated:
1. Factory-insulated flexible ducts.
2. Factory-insulated plenums and casings.
3. Flexible connectors.
5. Factory-insulated access panels and doors.

END OF SECTION 230713
SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following HVAC piping systems:
 1. Refrigerant piping.
 2. Coil condensate drain piping.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Field quality-control reports.

1.3 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; 749.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.
 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: 60 percent by volume and 66 percent by weight.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.
H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

L. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

M. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

A. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

E. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies.

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the
thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
3.6 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. All insulation applications will be considered defective work if sample inspection reveals noncompliance with requirements.

3.8 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.9 INDOOR PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: Flexible elastomeric, 1 inch thick.
 1. All refrigerant piping shall be insulated.

B. Refrigerant Suction and Hot-Gas Flexible Tubing: Flexible elastomeric, 1 inch thick.
 1. All refrigerant piping shall be insulated.

C. Coil Condensate Drain Piping: Flexible elastomeric, 1 inch thick.

3.10 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: Insulation shall be the following:
 1. Flexible Elastomeric: 1 inch thick.
 a. Provide aluminum jacket with stainless steel bands.

B. Refrigerant Suction and Hot-Gas Flexible Tubing: Insulation shall be the following:
 1. Flexible Elastomeric: 1 inch thick.
 a. Provide aluminum jacket with stainless steel bands.

END OF SECTION 230719
SECTION 230900 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

1.2 SUBMITTALS

A. Product Data: For each control device indicated.

B. Shop Drawings:
 1. Schematic flow diagrams.
 2. Power, signal, and control wiring diagrams.
 3. Details of control panel faces.
 4. Valve schedule.
 5. DDC System Hardware: Wiring diagrams, schematic floor plans, and schematic control diagrams.
 6. Control System Software: Schematic diagrams, written descriptions, and points list.

C. Software and firmware operational documentation.

D. Field quality-control test reports.

E. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CONTROL SYSTEM

A. Manufacturers:
 1. Automated Logic.
 2. Trane.

B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

C. All points of user interface shall be on standard PC's that do not require the purchase of special software from the BMS manufacturer for use as a building operations terminal. The primary point of interface on these PC's will be a standard web browser.

D. The BMS shall be a web-based application with microprocessor-based interoperable BACnet or LonWorks controllers in accordance with the ANSI/ASHRAE 135-2004 and most recent addendums. The system supplier must provide a PICS document showing the installed systems compliance level to the ANSI/ASHRAE Standard.
The BMS system shall communicate using the BACnet or LonWorks “open” protocol at both the supervisor and device level.

E. Integration of standalone microprocessors into the BMS shall be provided by either hardware points or as part of the packaged equipment control. Acceptable protocols to be provided for integration are:
 1. BACnet IP
 2. BACnet Ethernet
 3. BACnet MSTP
 4. BACnet ARCnet
 5. LonWorks
 6. Modbus RTU

F. BMS points in addition to and including those outlined herein or on the drawings shall be provided:
 1. Temperatures after each coil shall be monitored.
 2. Supply air temperature and space temperature shall be monitored for each unit.
 3. Digital status for each piece of controlled equipment shall be monitored.
 4. For each physical point provide a document which, at a minimum, shall indicate the following:
 a. User point identification name
 b. Logical point name
 c. Alarmable (yes or no)
 d. Point description
 e. BMS panel ID
 f. Fail position (open/closed, on/off)
 g. Digital or Analog
 h. Analog control range (temperature, pressure, etc.)
 i. Analog input/output range (Volts, mA, psi, etc.)
 j. Analog high limit alarm
 k. Analog low limit alarm
 l. For each virtual point provide a document which, at a minimum, shall indicate the following: User point identification name, Logical point name, Point function and use.
 5. All input points shall be alarmed. All alarms shall allow recognition, management and remote alarming.

G. The system shall be capable of supporting an unlimited number of clients using a standard web browser such as Internet Explorer, Google Chrome, or Mozilla Firefox. Systems requiring additional software (to enable a standard web browser) to be resident on the client machine, or manufacturer-specific browsers shall not be acceptable.

2.3 DDC EQUIPMENT

A. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation.
 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
 d. Software applications, scheduling, and alarm processing.
 e. Testing and developing control algorithms without disrupting field hardware and controlled environment.

B. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
 3. Local operator interface provides for download from or upload to operator workstation.

C. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 1. Binary Inputs: Allow monitoring of on-off signals without external power.
2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
7. Universal I/Os: Provide software selectable binary or analog outputs.

D. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 1. Output ripple of 5.0 mV maximum peak to peak.
 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.

E. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 1. Minimum dielectric strength of 1000 V.
 3. Minimum transverse-mode noise attenuation of 65 dB.
 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.4 UNITARY CONTROLLERS

A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
 1. Configuration: Diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and 72-hour battery backup.
 2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms. Perform automatic system diagnostics; monitor system and report failures.
 3. Enclosure: Dustproof rated for operation at 32 to 120 deg F.

2.5 ANALOG CONTROLLERS

A. Step Controllers: 6- to 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.

B. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.
 1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.

2.6 ELECTRONIC SENSORS

A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.

B. Thermmistor Temperature Sensors and Transmitters:
 1. Accuracy: Plus or minus 0.5 deg F at calibration point.
 2. Wire: Twisted, shielded-pair cable.
 3. Insertion Elements in Ducts: Single point, 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft. (0.84 sq. m).
 4. Averaging Elements in Ducts: 36 inches long, flexible, 18 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 10 sq. ft.
 5. Insertion Elements for Liquids: 36 inches long, flexible, 18 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 10 sq. ft.
 6. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 a. Set-Point Adjustment: Exposed.
 b. Set-Point Indication: Concealed.
 c. Thermometer: Concealed.
2.7 STATUS SENSORS

A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.

B. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

C. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.

D. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.

E. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

2.8 THERMOSTATS

A. Thermostats for Use with DDC Controllers Controlling Terminal Units:
 1. 100- or 1000-ohm platinum RTD or thermistor.
 2. Thermistor:
 a. Pre-aged, burned in, and coated with glass; inserted in a metal sleeve; and entire unit encased in epoxy.
 b. Thermistor drift shall be less than plus or minus 0.5 deg F over 10 years.
 3. Temperature Transmitter Requirements:
 a. Mating transmitter required with each 100-ohm RTD.
 b. Mating transmitters optional for 1000-ohm RTD and thermistor, contingent on compliance with end-to-end control accuracy.
 4. Provide digital display of sensed temperature.
 5. Provide sensor with local control.
 a. Local override to turn HVAC on.
 b. Local adjustment of temperature set point.
 c. Both features shall be capable of manual override through control system operator.

B. Airstream Thermostats: Two-pipe, fully proportional, single-temperature type; with adjustable set point in middle of range, adjustable throttling range, plug-in test fitting or permanent pressure gage, remote bulb, bimetal rod and tube, or averaging element.

C. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual-reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.
 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

D. Electric, High-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual-reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or above set point.
 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

2.9 ACTUATORS

A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 1. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
2. Nonspring-Return Motors for Valves Larger Than NPS 2-1/2: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
4. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.

B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
1. Dampers: Size for running torque calculated as follows:
 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
2. Coupling: V-bolt and V-shaped, toothed cradle.
3. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
5. Power Requirements (Two-Position Spring Return): 24-V ac.
6. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
7. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
8. Temperature Rating: Minus 22 plus 122 deg F.

2.10 DAMPERS

A. Dampers: AMCA-rated, parallel-blade design: 0.108-inch minimum thick, galvanized-steel or 0.125-inch-minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch-thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.
1. Secure blades to 1/2-inch-diameter, zinc-plated axles using zinc-plated hardware, with oil-impregnated sintered bronze blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
2. Operating Temperature Range: From minus 40 to plus 200 deg F.
3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.

2.11 CONTROL CABLE

A. All cable shall be installed in conduit.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.
1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.

B. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.

C. Install labels and nameplates to identify control components according to Division 23 Section "HVAC System Identification."

D. Install duct volume-control dampers according to Division 15 Sections specifying air ducts.
3.2 ELECTRICAL WIRING AND CONNECTION INSTALLATION

A. Controls contractor is responsible for providing all power to the controls systems.

B. Install raceways, boxes, and cabinets according to Division 16 Section "Raceways and Boxes."

C. Install building wire and cable according to Division 16 Section "Conductors and Cables."

D. Install signal and communication cable as described below:
 1. Install exposed cable in raceway.
 2. Install concealed cable in raceway.
 3. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 4. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 5. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 6. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.

E. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.

F. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 2. Test and adjust controls and safeties.
 3. Test calibration of controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
 4. Test each point through its full operating range to verify that safety and operating control set points are as required.
 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
 6. Test each system for compliance with sequence of operation.
 7. Test software and hardware interlocks.

C. DDC Verification:
 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
 2. Check instruments for proper location and accessibility.
 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
 4. Check instrument tubing for proper fittings, slope, material, and support.
 5. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
 6. Check temperature instruments and material and length of sensing elements.
 7. Check air-operated dampers. Verify that pressure gages are provided and that proper blade alignment, either parallel or opposed, has been provided.
 8. Check DDC system as follows:
 a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 c. Verify that spare I/O capacity has been provided.
 d. Verify that DDC controllers are protected from power supply surges.

D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.
3.4 CONTROL AND MONITORING POINTS

A. Refer to Sequences of Operation on Drawings.

END OF SECTION 230900
SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Pressure regulators.
6. Concrete bases.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:
1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 100 psig minimum unless otherwise indicated.
3. Minimum Operating Pressure of Service Meter: 5 psig.

B. Natural-Gas System Pressure within Buildings: 2.0 psig or less.

C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:
1. Piping specialties.
2. Corrugated, stainless-steel tubing with associated components.
3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
4. Pressure regulators. Indicate pressure ratings and capacities.
5. Dielectric fittings.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
1. Shop Drawing Scale: 1/4 inch per foot.
2. Detail mounting, supports, and valve arrangements for service meter assembly and pressure regulator assembly.
C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.

C. Qualification Data: For qualified professional engineer.

D. Welding certificates.

E. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For motorized gas valves and pressure regulators to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.10 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of natural-gas service.

2. Do not proceed with interruption of natural-gas service without Construction Manager's written permission.
1.11 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 08 31 13 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.
 5. Mechanical Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Dresser Piping Specialties; Division of Dresser, Inc.
 2) Smith-Blair, Inc.
 3) Pre-approved equal.
 b. Stainless-steel flanges and tube with epoxy finish.
 c. Buna-nitrile seals.
 d. Stainless-steel bolts, washers, and nuts.
 e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

B. Appliance Flexible Connectors:
 4. Corrugated stainless-steel tubing with polymer coating.
 5. Operating-Pressure Rating: 0.5 psig.
 8. Maximum Length: 72 inches

C. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 1. Copper-alloy convenience outlet and matching plug connector.
 2. Nitrile seals.
 3. Hand operated with automatic shutoff when disconnected.
 4. For indoor or outdoor applications.
 5. Adjustable, retractable restraining cable.

D. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

E. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.
2.2 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.3 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig.
 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
 f. Pre-approved equal.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Bronze Plug Valves: MSS SP-78.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lee Brass Company.
 c. Pre-approved equal.
 5. Operator: Square head or lug type with tamperproof feature where indicated.
 6. Pressure Class: 125 psig.
7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Cast-Iron, Lubricated Plug Valves: MSS SP-78.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flowserve.
 b. Homestead Valve; a division of Olson Technologies, Inc.
 d. Milliken Valve Company.
 e. Mueller Co.; Gas Products Div.
 g. Pre-approved equal.
2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with natural gas.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.4 MOTORIZED GAS VALVES

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ASCO Power Technologies, LP; Division of Emerson.
 b. Dungs, Karl, Inc.
 c. Eaton Corporation; Controls Div.
 d. Eclipse Combustion, Inc.
 e. Honeywell International Inc.
 f. Johnson Controls.
 g. Pre-approved equal.
2. Body: Brass or aluminum.
5. Normally closed.
7. Electrical operator for actuation by appliance automatic shutoff device.

B. Electrically Operated Valves: Comply with UL 429.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ASCO Power Technologies, LP; Division of Emerson.
 b. Dungs, Karl, Inc.
 c. Eclipse Combustion, Inc.
 d. Goyen Valve Corp.; Tyco Environmental Systems.
 e. Magnatrol Valve Corporation.
 f. Parker Hannifin Corporation; Climate & Industrial Controls Group; Skinner Valve Div.
 g. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 h. Pre-approved equal.
2. Pilot operated.
3. Body: Brass or aluminum.
5. Springs and Valve Trim: Stainless steel.
6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
7. NEMA ICS 6, Type 4, coil enclosure.
2.5 PRESSURE REGULATORS

A. General Requirements:
1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.
4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Actaris.
b. American Meter Company.
c. Fisher Control Valves and Regulators; Division of Emerson Process Management.
d. Invensys.
e. Richards Industries; Jordan Valve Div.
f. Pre-approved equal.
2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
12. Maximum Inlet Pressure: 100 psig.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Actaris.
b. American Meter Company.
c. Eclipse Combustion, Inc.
d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
e. Invensys.
f. Maxitrol Company.
g. Richards Industries; Jordan Valve Div.
h. Pre-approved equal.
2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
12. Maximum Inlet Pressure: 5 psig.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Canadian Meter Company Inc.
b. Eaton Corporation; Controls Div.
c. Harper Wyman Co.
d. Maxitrol Company.
e. SCP, Inc.
f. Pre-approved equal.
5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.
 i. Pre-approved equal.
2. Description:
 b. Pressure Rating: 150 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Wilkins; a Zurn company.
 f. Pre-approved equal.
2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 150 psig.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 e. Pre-approved equal.
2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.
2.7 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.
 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Install underground, PE, natural-gas piping according to ASTM D 2774.

D. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 3. Replace pipe having damaged PE coating with new pipe.

E. Install fittings for changes in direction and branch connections.

F. Install pressure gage downstream from each service regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
 3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. Exception: Tubing passing through partitions or walls does not require striker barriers.
 5. Prohibited Locations:
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use natural-gas piping as grounding electrode.

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

V. Install pressure gage downstream from each line regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."

W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."
X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 18 "Escutcheons for HVAC Piping."

3.5 SERVICE-METER ASSEMBLY INSTALLATION

A. Install service-meter assemblies aboveground, on concrete bases.

B. Install metal shutoff valves upstream from service regulators. Shutoff valves are not required at second regulators if two regulators are installed in series.

C. Install strainer on inlet of service-pressure regulator and meter set.

D. Install service regulators mounted outside with vent outlet horizontal or facing down. Install screen in vent outlet if not integral with service regulator.

E. Install metal shutoff valves upstream from service meters. Install dielectric fittings downstream from service meters.

F. Install service meters downstream from pressure regulators.

G. Install metal bollards to protect meter assemblies. Comply with requirements in Section 05 50 00 "Metal Fabrications" for pipe bollards.

3.6 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install anode for metallic valves in underground PE piping.

3.7 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.
G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.8 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.9 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.10 LABELING AND IDENTIFYING

A. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.11 PAINTING

A. Comply with requirements in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting" for painting interior and exterior natural-gas piping.

B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 1. Alkyd System: MPI EXT 5.1D.
 c. Topcoat: Exterior alkyd enamel (semigloss).
 d. Color: Gray.

C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 c. Topcoat: Interior latex (low sheen).
 d. Color: Gray.
 2. Alkyd System: MPI INT 5.1E.
 c. Topcoat: Interior alkyd (eggshell).
d. Color: Gray.

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.12 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base.
 1. Construct concrete bases a minimum of 4 inches and a maximum of 6 inches high, and not less than 4 inches larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 6. Use 3000-psig, 28-day, compressive-strength concrete and reinforcement as specified in Section 03 30 00 "Cast-in-Place Concrete."

3.13 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.14 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.

3.15 OUTDOOR PIPING SCHEDULE

A. Aboveground natural-gas pipingshall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

B. Branch Piping in Cast-in-Place Concrete to Single Appliance: Annealed-temper copper tube with wrought-copper fittings and brazed joints. Install piping embedded in concrete with no joints in concrete.

C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.16 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
D. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.17 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, lubricated plug valve.

E. Valves in branch piping for single appliance shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123
SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Refrigerant pipes and fittings.
 2. Refrigerant piping valves and specialties.
 3. Refrigerants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve and refrigerant piping specialty.
 1. Include pressure drop, based on manufacturer's test data, for the following:
 a. Thermostatic expansion valves.
 b. Solenoid valves.
 c. Filter dryers.
 d. Strainers.
 e. Pressure-regulating valves.

B. Shop Drawings:
 1. Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes; flow capacities; valve arrangements and locations; slopes of horizontal runs; oil traps; double risers; wall and floor penetrations; and equipment connection details.
 2. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
 3. Show interface and spatial relationships between piping and equipment.
 4. Shop Drawing Scale: 1/4 inch equals 1 foot.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to 2010 ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping with end caps in place to ensure that piping interior and exterior are clean when installed.
PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 88, Type K or L.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

E. Brazing Filler Metals: AWS A5.8/A5.8M.

F. Flexible Connectors:
 2. End Connections: Socket ends.
 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
 5. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.

E. Install a full-size, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by 2010 ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for the device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Hot-gas bypass valves.
 4. Compressor.

K. Install receivers sized to accommodate pump-down charge.
L. Install flexible connectors at compressors.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Section 230900 "Instrumentation and Control for HVAC" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

P. When brazeing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 1. Shot blast the interior of piping.
 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
S. Identify refrigerant piping and valves according to Section 230553 "HVAC System Identification."

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230500 "Common Work Results for HVAC."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230500 "Common Work Results for HVAC."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230500 "Common Work Results for HVAC."

3.3 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.
 2. Use Type BA (cadmium-free silver) alloy for joining copper with bronze or steel.

F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and to restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.

I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 HANGERS AND SUPPORTS

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 1. NPS 1/2: Maximum span, 60 inches; minimum rod, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches; minimum rod, 1/4 inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod, 1/4 inch.
 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod, 3/8 inch.
 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod, 3/8 inch.

D. Support multifloor vertical runs at least at each floor.
3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

B. Prepare test and inspection reports.

3.6 SYSTEM CHARGING

A. Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 4. Charge system with a new filter-dryer core in charging line.

3.7 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 1. Open shutoff valves in condenser water circuit.
 2. Verify that compressor oil level is correct.
 3. Open compressor suction and discharge valves.
 4. Open refrigerant valves except bypass valves that are used for other purposes.
 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Single-wall rectangular ducts and fittings.
2. Single-wall round ducts and fittings.
3. Double-wall round ducts and fittings.
4. Sheet metal materials.
5. Duct liner.
7. Hangers and supports.

B. Related Sections:
1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Section 233300 "Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
1. Liners and adhesives.
2. Sealants and gaskets.

B. Shop Drawings:
1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 2. Suspended ceiling components.
 3. Structural members to which duct will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Penetrations of smoke barriers and fire-rated construction.
 6. Items penetrating finished ceiling including the following:
 a. Luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

B. Welding certificates.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

B. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 DOUBLE-WALL ROUND DUCTS AND FITTINGS

A. Round Ducts: Indicated dimensions are the duct diameter of the inner duct.

B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible.*
 a. Transverse Joints in Ducts Larger Than 60 inches in Diameter: Flanged.
 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible.*
 a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.

D. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 3. Coat insulation with antimicrobial coating.
 4. Cover insulation with polyester film complying with UL 181, Class 1.

2.4 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
2.5 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
1. Maximum Thermal Conductivity:
 a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
3. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.

B. Insulation Pins and Washers:
1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding. 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.6 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Water-Based Joint and Seam Sealant:
1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
C. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

E. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.7 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead.

C. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

D. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts at a minimum to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 2. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 3. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
 4. Unconditioned Space, Exhaust Ducts: Seal Class C.
 5. Unconditioned Space, Return-Air Ducts: Seal Class B.
 6. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
 7. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
 8. Conditioned Space, Exhaust Ducts: Seal Class B.
 9. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.
E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Test the following systems:
 a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
 b. Supply Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
 c. Return Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
 d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
 e. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 4. Test for leaks before applying external insulation.
 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.8 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.
B. Refer to Ductwork Schedule on Drawings.

END OF SECTION 233113
SECTION 233116 - NONMETAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Underground Ducts

1.3 ACTION SUBMITTALS
A. Provide Product Data: For each type of the following products, furnished specialties and accessories.
 1. Underground Ducts
 2. Sealants and Gaskets
B. Shop Drawings: For underground ducts. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Burial and supports, including methods for duct burial and internal and external bracing if recommended by the manufacturer.

1.4 CLOSEOUT SUBMITTALS
A. Installation and Maintenance Data: For underground ducts include installation and maintenance manuals.
 1. Instructions for joining ducts
 2. Instructions for proper backfilling and precautions.

1.5 QUALITY ASSURANCE
A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

PART 2 - PRODUCTS

2.1 UNDERGROUND DUCTWORK
A. Acceptable Manufacturers:
 1. The BlueDuct® by AQC Industries, Roseville, MN 55126, (877-783-1520).www.aqcind.com and e-mail: team@aqcind.com
B. Complete duct system (including: plenums, round duct, run-outs, diffuser boots, etc.) must be from one manufacturer and be of the same material, construction and connection method throughout. Field made duct components are NOT acceptable.
C. Include the complete underground duct system including plenums and diffuser boots.
D. Unless otherwise noted, all duct and fittings shall be constructed per SMACNA’s Duct Construction Standards (+10 w.g.).
E. Provide elbows, duct, diffusers, plenum, clamp & gasket, boots, saddle registers and caulk as required by drawings for underground installation.
F. Ductwork shall be closed cell plastic material that is recyclable, does not emit volatile organic compounds, and conforms to ASTM-D2412. Ductwork shall be resistant to mildew, mold (UL 181B), and radon gas (BSS 7239-88). Ductwork shall not rust or crack under external stress or strain. Ductwork shall have integral R-10 equivalent thermal insulation value, without the use of external insulation, per NSF's P374 Protocol and verified by a NSF Thermal Testing Report.

G. All joints shall be sealed via gasket or bolts and sealant. Clamps and gaskets shall be used on ductwork without flanges. Clamps shall be polyethylene with stainless steel plates and stainless steel screws. Gaskets shall comprise of ¼" thick butyl rubber sealant tape that is water and UV resistant and shall not stain. Gaskets shall comply with ASTM-E84 for flame and smoke spread.

H. Flanged joints and duct branches shall use a co-polymer adhesive caulking sealant that is water and UV resistant. Flanges shall be connected with stainless steel bolts.

I. Assembled ductwork shall be able to maintain pressure with no leakage.

J. Duct system shall be installed by an AQC Industries' trained installer.

K. Fiberglass style (FRP) ductwork or PVC coated galvanized steel ductwork shall NOT be acceptable.

L. Duct system performance shall exceed SMACNA's Leakage Class 3 requirements at the system design static pressure.

M. Duct system shall carry a 10 year Limited Warranty.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Follow The BlueDuct Installation Instructions provided by AQC Industries. It is strongly recommended to complete installation training provided by AQC Industries prior to installation.

B. Excavate a trench evenly as per The Blue Duct Installation Instructions. No bedding is required except for cases of bedrock or clay where sand or light aggregate may be used.

C. Backfill material must consist of pea gravel or dry silica sand.

D. The sealant and gasket material provided by AQC Industries must be used as directed. The use of non-approved sealant or gasket will void warranty.

3.2 TESTING

A. The complete underground duct system shall be tested for leakage after final assembly.

B. Follow SMACNA air duct leakage test standard.

C. Allow 24 hours for The BlueDuct sealant to cure after final assembly before testing the duct system. Additional curing time may be required in high ambient conditions.

3.3 CLEANING

A. Remove dust and debris from ductwork prior to occupancy.

END OF SECTION 233116
SECTION 233300 - DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
1. Backdraft dampers.
2. Volume dampers.
3. Fire dampers.
4. Smoke dampers.
5. Combination fire and smoke dampers.
6. Turning vanes.
7. Duct-mounting access doors.
8. Flexible connectors.
10. Duct accessory hardware.
11. Duct silencers.

B. See "Fire Alarm" for duct-mounting fire and smoke detectors.

C. See Division 23 Section "HVAC Instrumentation and Controls" for electric and pneumatic damper actuators.

1.2 SUBMITTALS

A. Product Data: For the following:
1. Backdraft dampers.
2. Volume dampers.
3. Fire dampers.
4. Ceiling fire dampers.
5. Smoke dampers.
6. Combination fire and smoke dampers.
7. Turning vanes.
8. Duct-mounting access doors.
10. Flexible ducts.
11. Duct Silencers.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
1. Special fittings.
3. Fire-damper, smoke-damper, and combination fire- and smoke-damper installations, including sleeves and duct-mounting access doors.

1.3 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
2.2 SHEET METAL MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated.

B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G90 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.

C. Stainless Steel: ASTM A 480/A 480M.

D. Aluminum Sheets: ASTM B 209, alloy 3003, temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Air Balance, Inc.
 2. American Warming and Ventilating.
 3. CESCO Products.
 4. Duro Dyne Corp.
 5. Greenheck.
 7. Prefco Products, Inc.
 8. Ruskin Company.
 11. Pre-approved equal.

B. Description: Multiple-blade, parallel action gravity balanced, with center-pivoted blades of maximum 6-inch width, with sealed edges, assembled in rattle-free manner with 90-degree stop, steel ball bearings, and axles; adjustment device to permit setting for varying differential static pressure.

C. Frame: 0.052-inch-thick, galvanized sheet steel, with welded corners and mounting flange.

D. Blades: 0.050-inch-thick aluminum sheet.

E. Blade Seals: Neoprene.

F. Blade Axles: Galvanized steel.

G. Tie Bars and Brackets: Galvanized steel.

H. Return Spring: Adjustable tension.

2.4 VOLUME DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Air Balance, Inc.
 2. American Warming and Ventilating.
 3. Flexmaster U.S.A., Inc.
 5. METALAIRE, Inc.
 6. Nailor Industries Inc.
7. Penn Ventilation Company, Inc.
8. Ruskin Company.
10. Greenheck Fan Corporation
11. Pottorff.
12. Pre-approved equal.

B. General Description: Factory fabricated, with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.

C. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating, with linkage outside airstream, and suitable for horizontal or vertical applications.
 1. Steel Frames: Hat-shaped, galvanized sheet steel channels, minimum of 0.064 inch thick, with mitered and welded corners; frames with flanges where indicated for attaching to walls and flangeless frames where indicated for installing in ducts.
 2. Roll-Formed Steel Blades: 0.064-inch-thick, galvanized sheet steel.
 5. Tie Bars and Brackets: Galvanized steel.

D. Jackshaft: 1-inch-diameter, galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 1. Length and Number of Mountings: Appropriate to connect linkage of each damper in multiple-damper assembly.

E. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operating-rod size. Include elevated platform for insulated duct mounting.

2.5 FIRE DAMPERS

A. Manufacturers:
 1. Air Balance, Inc.
 2. CESCO Products.
 5. METALAIRE, Inc.
 6. Nailor Industries Inc.
 7. Penn Ventilation Company, Inc.
 8. Prefco Products, Inc.
 12. Pottorff.
 13. Pre-approved equal.

B. Fire dampers shall be labeled according to UL 555.

C. Fire Rating: 1-1/2 hours for dampers in walls rated 2-hours or less. 3 hour rating for dampers in walls rated greater than 2-hours.

D. Frame: Low pressure applications (2" wg and less): curtain type with blades inside airstream; for ductwork constructed in higher pressure applications (above 2" wg): curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.138 inch thick and of length to suit application.
 2. Exceptions: Omit sleeve where damper frame width permits direct attachment of perimeter mounting angles on each side of wall or floor, and thickness of damper frame complies with sleeve requirements.

F. Mounting Orientation: Vertical or horizontal as indicated.
G. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

H. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

I. Fusible Links: Replaceable, 165 deg F rated.

2.6 SMOKE OR COMBINATION FIRE AND SMOKE DAMPERS

A. Manufacturers:
 1. Air Balance, Inc.
 2. CESCO Products.
 4. Nailor Industries Inc.
 5. Penn Ventilation Company, Inc.
 6. Ruskin Company.
 7. Pottorff.
 8. Pre-approved equal

B. General Description: Labeled according to UL 555S. Combination fire and smoke dampers shall be labeled according to UL 555 for 1-1/2-hour rating.

C. Fusible Links: Replaceable, 165 deg F rated.

D. Frame and Blades: 0.064-inch-thick, galvanized sheet steel.

E. Mounting Sleeve: Factory-installed, 0.052-inch-thick, galvanized sheet steel; length to suit wall or floor application.

F. Damper Motors: Modulating and two-position action.
 1. Motors: With oil-immersed and sealed gear trains.
 2. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 3. Outdoor Motors and Motors in Outside-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 4. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 5. Electrical Connection: 115 V, single phase, 60 Hz.

2.7 TURNING VANES

A. Fabricate to comply with SMACNA’s “HVAC Duct Construction Standards--Metal and Flexible” for vanes and vane runners. Vane runners shall automatically align vanes.

B. Manufactured Turning Vanes: Fabricate 1-1/2-inch-wide, double-vane, curved blades of galvanized sheet steel set 3/4 inch o.c.; support with bars perpendicular to blades set 2 inches o.c.; and set into vane runners suitable for duct mounting.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ductmate Industries, Inc.
 b. Duro Dyne Corp.
 c. METALAIRE, Inc.
 d. Ward Industries, Inc.
 e. Pre-approved equal

C. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.

D. Turning vanes to be provided at all elbows of all angles, with and without acoustic duct lining.

2.8 DUCT-MOUNTING ACCESS DOORS

A. General Description: Fabricate doors airtight and suitable for duct pressure class.
B. Door: Double wall, duct mounting, and rectangular; fabricated of galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class. Include vision panel where indicated. Include 1-by-1-inch butt or piano hinge and cam latches.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Warming and Ventilating.
 b. CESCO Products.
 c. Ductmate Industries, Inc.
 d. Flexmaster U.S.A., Inc.
 e. Greenheck.
 g. Nailor Industries Inc.
 h. Ventfabrics, Inc.
 i. Ward Industries, Inc.
 j. Elgen Manufacturing
 k. Pre-approved equal.

 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

 3. Provide number of hinges and locks as follows:
 a. Less Than 12 Inches Square: Secure with two sash locks.
 b. Up to 18 Inches Square: Two hinges and two sash locks.
 c. Up to 24 by 48 Inches: Three hinges and two compression latches.
 d. Sizes 24 by 48 Inches and Larger: One additional hinge.

C. Door: Double wall, duct mounting, and round; fabricated of galvanized sheet metal with insulation fill and 1-inch thickness. Include cam latches.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ductmate Industries, Inc.
 b. Flexmaster U.S.A., Inc.
 c. Pre-approved equal.

 2. Frame: Galvanized sheet steel, with spin-in notched frame.

D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.

E. Insulation: 1-inch-thick, fibrous-glass or polystyrene-foam board.

2.9 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Corp.
 3. Ventfabrics, Inc.
 5. Pre-approved equal.

B. General Description: Flame-retardant or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

2.10 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flexmaster U.S.A., Inc.
 2. Thermaflex.
 4. Pre-approved equal.

B. Insulated-Duct Connectors: UL 181, Class 1; 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.

C. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 through 18 inches to suit duct size.

2.11 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.12 DUCT SILENCERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
1. Industrial Acoustics Company.
2. Vibroacoustics.

B. General Requirements:
1. Furnish and install “Quiet-Duct” (rectangular) silencers of the types and sizes shown on the plans and/or listed in the schedule. Silencers shall be the product of Industrial Acoustics Company. Any specification change must be submitted in writing and approved by the Architect/Engineer, in writing, at least 10 days prior to the bid due-date.

C. Materials:
1. Outer casings of rectangular silencers shall be made of 22 gauge type #G-90 lock-former-quality galvanized steel unless otherwise noted on schedule.
2. Interior partitions for rectangular silencers shall be not less than 26 gauge type #G-90 galvanized lock-former-quality perforated steel.
3. Filler material shall be inorganic glass fiber of a proper density to obtain the specified acoustic performance and be packed under not less than 5% compression to eliminate voids due to vibration and settling. Material shall be inert, vermin- and moisture-proof.
4. Combustion ratings for the silencer acoustic fill shall be not greater than the following when tested to ASTM E 84, NFPA Standard 255, or UL No. 723:

D. Construction:
1. Units shall be constructed in accordance with the ASHRAE Guide recommendations for high pressure duct work. Seams shall be lock formed and mastic filled. Rectangular casing seams shall be in the corners of the silencer shell to provide maximum unit strength and rigidity. Interior partitions shall be fabricated from single-piece, margin-perforated sheets and shall have die-formed entrance and exit shapes so as to provide the maximum aerodynamic efficiency and minimum self-noise characteristics in the sound attenuator. Blunt noses or squared off partitions will not be accepted.
2. Attachment of the interior partitions to the casing shall be by means of an interlocking track assembly. Tracks shall be solid galvanized steel and shall be welded to the outer casing. Attachment of the interior partitions to the tracks shall be such that a minimum of 4 thicknesses of metal exist at this location. The track assembly shall stiffen the exterior casing, provide a reinforced attachment detail for the interior partitions, and shall maintain a uniform airspace width along the length of the silencer for consistent aerodynamic and acoustic performance. Interior partitions shall be additionally secured to the outer casing with welded nose clips at both ends of the sound attenuator.
3. Sound attenuating units shall not fail structurally when subjected to a differential air pressure of 8 inches water gauge from inside to outside the casing. Airtight construction shall be provided by use of a duct sealing compound on the job-site material and labor furnished by the contractor.

E. Acoustic Performance:
1. All silencer ratings shall be determined in a duct-to-reverberant room test facility which provides for airflow in both directions through the test silencer in accordance with ASTM Specification E477-99. The test facility shall be NVLAP accredited for the ASTM E477-99 test standard. Data from a non-accredited laboratory will not be acceptable. The test set-up and procedure shall be such that all effects due to end reflection, directivity, flanking transmission, standing waves and test chamber sound absorption are eliminated.
Acoustic ratings shall include Dynamic Insertion Loss (DIL) and Self-Noise (SN) Power Levels both for FORWARD FLOW (air and noise in same direction) and REVERSE FLOW (air and noise in opposite directions) with airflow of at least 2000 fpm entering face velocity. Data for rectangular and tubular type silencers shall be presented for tests conducted using silencers no smaller than the following cross-sections:
 a. Rectangular, inch: 24x24, 24x30, or 24x36.
 b. Tubular, inch: 12, 24, 36, and 48.

F. Aerodynamic Performance:
 1. Static pressure loss of silencers shall not exceed 0.05” wg. Airflow measurements shall be made in accordance with ASTM specification E477-99 and applicable portions of ASME, AMCA, and ADC airflow test codes. Tests shall be reported on the identical units for which acoustic data is presented.

G. Certification:
 1. With submittals, the manufacturer shall supply certified test data on Dynamic Insertion Loss, Self-Noise Power Levels, and Aerodynamic Performance for Reverse and Forward Flow test conditions. Test data shall be for a standard product. All rating tests shall be conducted in the same facility, shall utilize the same silencer, and shall be open to inspection upon request from the Architect/Engineer.

H. Duct Transitions:
 1. When transitions are required to adapt silencer dimensions to connecting duct work they shall be furnished by the installing contractor.

PART 3 - EXECUTION

3.1 APPLICATION AND INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s "HVAC Duct Construction Standards–Metal and Flexible” for metal ducts and in NAIMA AH116, "Fiberglass Glass Duct Construction Standards,” for fibrous-glass ducts.

B. Provide duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers on exhaust fans or exhaust ducts nearest to outside and where indicated.

D. Install volume dampers in ducts with liner; avoid damage to and erosion of duct liner.

E. Provide balancing dampers at points on supply, return, and exhaust systems where branches lead from larger ducts as required for air balancing. Install at a minimum of two duct widths from branch takeoff.

F. Provide test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers, with fusible links, according to manufacturer’s UL-approved written instructions.

H. Install duct access doors to allow for inspecting, adjusting, and maintaining accessories and terminal units as follows:
 1. On both sides of duct coils.
 2. Downstream from volume dampers and equipment.
 3. Adjacent to fire or smoke dampers, providing access to reset or reinstall fusible links.
 4. To interior of ducts for cleaning; before and after each change in direction, at maximum 50-foot spacing.
 5. On sides of ducts where adequate clearance is available.

I. Install the following sizes for duct-mounting, rectangular access doors:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

J. Install the following sizes for duct-mounting, round access doors:
1. One-Hand or Inspection Access: 8 inches in diameter.
3. Head and Hand Access: 12 inches in diameter.

K. Label access doors according to Division 23 Section "HVAC System Identification."

L. Install flexible connectors immediately adjacent to equipment in ducts associated with fans and motorized equipment supported by vibration isolators.

M. Connect diffusers or light troffer boots to low pressure ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

N. Connect flexible ducts to metal ducts with draw bands.

O. Install duct test holes where indicated and required for testing and balancing purposes.

3.2 ADJUSTING

A. Adjust duct accessories for proper settings.

B. Adjust fire and smoke dampers for proper action.

C. Final positioning of manual-volume dampers is specified in Division 23 Section "Testing, Adjusting, and Balancing."

END OF SECTION 233300
SECTION 233416 - CENTRIFUGAL HVAC FANS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Centrifugal roof ventilators

1.2 SUBMITTALS

A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Field quality-control test reports.

D. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

C. UL Standard: Power ventilators shall comply with UL 705.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Greenheck.
 2. Loren Cook Company.
 3. Twin City Fan.
 4. PennBarry.

B. Kitchen exhaust fans shall be by the same manufacturer as the kitchen hood. Refer to Section 233813.

C. Description: Direct- or belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, curb base, and accessories.

D. Housing: Removable, spun-aluminum, dome top and outlet baffle or upblast as scheduled; square, one-piece, aluminum base with venturi inlet cone.
 1. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.

E. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

F. Belt-Driven Drive Assembly: Resiliently mounted to housing, with the following features:
 1. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 4. Fan and motor isolated from exhaust airstream.

G. Accessories:
 1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
2. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
3. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

H. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 2. Overall Height: 12 inches.
 5. Mounting Pedestal: Galvanized steel with removable access panel.

2.2 MOTORS
A. Enclosure Type: Totally enclosed, fan cooled.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Install power ventilators level and plumb.
B. Support units using elastomeric mounts having a static deflection of 1 inch.
C. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
D. Support suspended units from structure using threaded steel rods and elastomeric hangers having a static deflection of 1 inch.
E. Install units with clearances for service and maintenance.
F. Label units according to requirements specified in Division 23 Section "Mechanical Identification."
G. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Duct Accessories."
H. Install ducts adjacent to power ventilators to allow service and maintenance.
I. Ground equipment according to Section "Grounding and Bonding."
J. Connect wiring according to Section "Conductors and Cables."
K. Install units on curbs per manufacturer’s installation instructions.

3.2 FIELD QUALITY CONTROL
A. Perform the following field tests and inspections and prepare test reports:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

END OF SECTION 233416
SECTION 233423.01 - HVAC DUST COLLECTOR

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Shaker, dust collector.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes for fans.
2. Rated capacities, operating characteristics, and furnished specialties and accessories.
3. Certified fan performance curves with system operating conditions indicated.
4. Certified fan sound-power ratings.
5. Motor ratings and electrical characteristics, plus motor and electrical accessories.
6. Material thickness and finishes, including color charts.
7. Dampers, including housings, linkages, and operators.
8. Prefabricated roof curbs.
B. Shop Drawings:
1. Include plans, elevations, sections, and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.
4. Design Calculations: Calculate requirements for selecting vibration isolators.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, or BIM model, drawn to scale, showing the items described in this Section and coordinated with all building trades.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: To include in normal and emergency operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Basis of Design:
1. The collector shall be equal to Donaldson Torit Unimaster Model UMA by Donaldson Company, Inc.

B. Capacities and Characteristics:
1. Furnish as complete intermittent duty, shaker fabric filter dust collection as shown on the plans and/or listed on the equipment schedule. The system shall provide cleaning for a volumetric flow rate as listed on the schedule. The collector system shall have a minimum of 444 square feet for model 450 (150 sq for model 150) of 8 oz woven anti-static bag filter media.
2. The collector will include a fan section, filter section and 55-Gallon Drums Base.
3. The collector housing and supports shall be constructed of carbon steel and the housing reinforced for maximum pressure of the integral fan.
4. The interior and exterior of the collector housing will have a baked-on powder paint finish. All internal components shall have a baked on electrophoretically applied epoxy paint finish.
5. The collector will have mechanism designed to accept one or two 55-gallon drum (no fasteners or clamps are required). Dust laden air will flow upward into the filter section which shall contain a single, multi-envelope filter with spring steel wire mesh inserts fitted with wear liners. The slide out filter assembly shall be supported on runners retained by a quick release lever. The filtered air shall flow into the fan section. The fan shall be a wheel design directly driven by TEFC motor.
6. Filter cleaning occurs after each fan shut down. Filter shaking is via an eccentric mounted on TENV motor located on the side of the housing.
7. A controller shall be furnished, consisting of start/clean pushbuttons, timer and motor contactors with overloads for the fan and shaker motors, all in a NEMA 12 enclosure. The controller shall automatically activate the filter shaker motor for 35 seconds each time the fan is shut off.
8. The collector will be supplied with lift-off hinged doors for access to the fan and filter chamber. No tools shall be required for filter removal and replacement.

C. Accessories:
1. Provide sprinkler tap.
2. Provide Acoustic Diffuser Silencer (40). The fan shall discharge into a special fan chamber designed for noise reduction.

2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 SOURCE QUALITY CONTROL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. AMCA Certification: Fans shall comply with AMCA 11 and bear the AMCA-Certified Ratings Seal.

C. Fan Sound Ratings: Comply with AMCA 311, and label fans with the AMCA-Certified Ratings Seal. Sound ratings shall comply with AMCA 301. The fans shall be tested according to AMCA 300.

D. Fan Performance Ratings: Comply with AMCA 211 and label fans with AMCA-Certified Rating Seal. The fans shall be tested for air performance - flow rate, fan pressure, power, fan efficiency, air density, speed of rotation, and fan efficiency - according to AMCA 210/ASHRAE 51.

E. Operating Limits: Classify according to AMCA 99.

F. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

PART 3 - EXECUTION

3.1 INSTALLATION OF DUST COLLECTORS

A. Install dust collector level and plumb.

B. Equipment Mounting:
 1. Install dust collector on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

C. Install units with clearances for service and maintenance.
3.2 DUCTWORK CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

3.3 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that there is adequate maintenance and access space.
 4. Verify that cleaning and adjusting are complete.
 5. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 6. Adjust belt tension.
 7. Adjust damper linkages for proper damper operation.
 8. Verify lubrication for bearings and other moving parts.
 9. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 10. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 11. Shut unit down and reconnect automatic temperature-control operators.
 12. Remove and replace malfunctioning units and retest as specified above.

F. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust belt tension.
B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

C. Replace fan and motor pulleys as required to achieve design airflow.

D. Lubricate bearings.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans.

END OF SECTION 233423.01
SECTION 233600 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Single-duct air terminal units.
 2. Parallel, fan-powered air terminal units.
 3. Casing liner.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of air terminal unit.

B. Shop Drawings: For air terminal units.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method
 of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
 4. Hangers and supports, including methods for duct and building attachment and vibration isolation.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflect ceiling plans, drawn to scale, on which the following items are shown and
 coordinated with each other, using input from installers of the items involved:

B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing
 agency, and marked for intended location and application.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and
 Section 7 - "Construction and System Start-up."

C. ASHRAE Compliance: Applicable requirements in ASHRAE/IES 90.1, "Section 6 - Heating, Ventilating, and Air
 Conditioning."

2.2 SINGLE DUCT AIR TERMINAL UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Titus.
 2. Trane.
 5. Krueger.

B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal
 shroud.

C. Casing: 0.034-inch-thick galvanized steel, single wall.
1. Casing Liner: Comply with requirements in "Casing Liner" Article for fibrous-glass or flexible elastomeric duct liner.
2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
3. Air Outlet: S-slip and drive connections.
4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Regulator Assembly: System-air-powered bellows section incorporating polypropylene bellows for volume regulation and thermostatic control. Bellows shall operate at temperatures from zero to 140 deg F, shall be impervious to moisture and fungus, shall be suitable for 10-inch wg static pressure, and shall be factory tested for leaks.

E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.

F. Attenuator Section: 0.034-inch steel sheet.
 1. Attenuator Section Liner: Comply with requirements in "Casing Liner" Article for fibrous-glass duct liner.
 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

 1. SCR controlled.
 2. Access door interlocked disconnect switch.
 3. Downstream air temperature sensor with local connection to override discharge-air temperature to not exceed a maximum temperature set point (adjustable).
 5. Airflow switch for proof of airflow.
 6. Fan interlock contacts.
 7. Fuses in terminal box for overcurrent protection (for coils more than 48 A).

H. Factory-Mounted and -Wired Controls: Electrical components mounted in control box with removable cover. Incorporate single-point electrical connection to power source.
 1. Control Transformer: Factory mounted for control voltage on electric and electronic control units with terminal strip in control box for field wiring of thermostat and power source.
 2. Wiring Terminations: Fan and controls to terminal strip. Terminal lugs to match quantities, sizes, and materials of branch-circuit conductors. Enclose terminal lugs in terminal box that is sized according to NFPA 70.
 3. Disconnect Switch: Factory-mounted, fuse type.

I. Control Panel Enclosure: NEMA 250, Type 1, with access panel sealed from airflow and mounted on side of unit.

J. Control devices shall be compatible with temperature controls system specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 1. Electric Damper Actuator: 24 V, powered open, spring return.
 2. Terminal Unit Controller: Pressure-independent, VAV controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum airflow volumes.

2.3 CASING LINER

A. Casing Liner: Fibrous-glass duct liner, complying with ASTM C1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Minimum Thickness: 1 inch.
 a. Maximum Thermal Conductivity:
 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 2) Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 3) Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C916.
2.4 SOURCE QUALITY CONTROL

A. Factory Tests: Test assembled air terminal units according to AHRI 880.
 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, and AHRI certification seal.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 5, "Hangers and Supports" and with Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.2 TERMINAL UNIT INSTALLATION

A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

C. Comply with requirements in Section 233113 "Metal Ducts" for connecting ducts to air terminal units.

D. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Duct Accessories."

E. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 230553 "HVAC System Identification" for equipment labels and warning signs and labels.

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Air terminal unit will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 233600
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes ceiling, wall and floor-mounted diffusers, registers, and grilles.

1.2 SUBMITTALS

A. Product Data: For each product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate Drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 GRILLES, DIFFUSERS AND REGISTERS

A. See schedule on the drawings.
 1. Manufacturers:
 a. Krueger.
 b. Nailor Industries of Texas Inc.
 c. Price Industries.
 d. Titus.
 e. Architectural Grille (Tag: LBG-1 only)

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practicable. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
SECTION 237416.11 - PACKAGED, SMALL-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes packaged, small-capacity (less than or equal to 20-ton), rooftop air-conditioning units (RTUs) with the following components:
 1. Casings.
 2. Fans, drives, and motors.
 3. Rotary heat exchangers.
 5. Refrigerant circuit components.
 6. Air filtration.
 7. Gas furnaces.
 8. Dampers.
 9. Electrical power connections.
 10. Controls.
 11. Roof curbs.
 12. Accessories.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of RTU.

B. Shop Drawings: For each packaged, small-capacity, rooftop air-conditioning unit.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.

B. Sample Warranty: For manufacturer's warranty.

C. Source quality-control reports.

D. System startup reports.

E. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.5 WARRANTY

A. Warranty: Manufacturer agrees to repair or replace (parts and labor) components of outdoor, semi-custom, air-handling unit that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: One year from date of Substantial Completion.
 2. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.
 3. Warranty Period for Compressors: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Trane.
 2. Daikin Applied.
 3. YORK; a Johnson Controls company.

2.2 UNIT CASINGS

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Single-Wall Construction:
 1. Outside Casing Wall: Galvanized steel, minimum 18 gauge thick with manufacturer's standard finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
 2. Floor Plate: 20 gauge galvanized steel, minimum 18 gauge thick.
 3. Casing Insulation:
 b. Insulation Thickness: 1 inch.

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. Static-Pressure Classifications:
 1. For Unit Sections Upstream of Fans: Minus 2-inch wg.
 2. For Unit Sections Downstream and Including Fans: 2-inch wg.

E. Panels and Doors:
 1. Panels:
 a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 b. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 c. Gasket: Neoprene, applied around entire perimeters of panel frames.
 d. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
 2. Locations and Applications:
 a. Fan Section: Inspection and access panels.
 b. Access Section: Inspection and access panels.
 c. Coil Section: Inspection and access panels.
 d. Damper Section: Inspection and access panels.
 e. Filter Section: Inspection and access panels large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Inspection and access panels.

F. Condensate Drain Pans:
 1. Location: Each type of cooling coil.
 2. Construction:
 3. Drain Connection:
 a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 4. Slope: Minimum 0.125-in./ft. slope, to comply with ASHRAE 62.1, in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 5. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1.
 7. Depth: A minimum of 2 inches deep.

2.3 FANS, DRIVES, AND MOTORS

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.
B. Supply-Air Fans: Centrifugal, rated according to AMCA 210; galvanized or painted steel; mounted on solid-steel shaft.
 1. Shafts: With field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway.
 2. Shaft Bearings:
 a. Heavy-duty, self-aligning, pillow-block type with an L-50 rated life of minimum 100,000 hours according to ABMA 9.
 3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 a. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 4. Centrifugal Fan Wheels: Inlet flange, backplate, and shallow blades with inlet and tip curved forward in direction of airflow and mechanically fastened to flange and backplate; steel or aluminum hub swaged to backplate and fastened to shaft with setscrews.

C. Drives, Direct: Factory-mounted, direct drive.

D. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motors.

E. Relief-Air Fan: Forward curved, shaft mounted on permanently lubricated motor.

F. Motors:
 1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 3. Enclosure Type: Open, dripproof.
 4. Enclosure Materials: Cast iron.
 5. Efficiency: Premium efficient as defined in NEMA MG 1.

2.4 COILS

A. General Requirements for Coils:
 1. Comply with AHRI 410.
 2. Fabricate coils section to allow for removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 3. Coils shall not act as structural component of unit.

B. Supply-Air Refrigerant Coil:
 1. Tubes: Copper.
 2. Fins:
 3. Fin and Tube Joints: Mechanical bond.
 5. Frames: Galvanized steel.
 6. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

C. Outdoor-Air Refrigerant Coil:
 1. Tubes: Copper.
 2. Fins:
 3. Fin and Tube Joints: Mechanical bond.
 5. Frames: Galvanized steel.
6. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

D. Hot-Gas Reheat Refrigerant Coil:
 1. Tubes: Copper.
 2. Fins:
 3. Fin and Tube Joints: Mechanical bond.
 5. Frames: Galvanized steel.
 6. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.
 7. Suction-discharge bypass valve.

2.5 REFRIGERANT CIRCUIT COMPONENTS

A. Compressor: Hermetic, variable-speed scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

B. Refrigeration Specialties:
 1. Refrigerant: R-410A.
 2. Expansion valve with replaceable thermostatic element.
 3. Refrigerant filter/dryer.
 5. Automatic-reset low-pressure safety switch.
 8. Brass service valves installed in compressor suction and liquid lines.
 9. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.

2.6 AIR FILTRATION

A. Particulate air filtration is specified in Section 234100 "Particulate Air Filtration."

B. Panel Filters:
 1. Description: Pleated factory-fabricated, self-supported, disposable air filters with holding frames.
 2. Filter Unit Class: UL 900.
 3. Media: Interlaced glass, synthetic or cotton fibers coated with nonflammable adhesive and antimicrobial coating.
 4. Filter-Media Frame: Beverage board with perforated metal retainer, or metal grid, on outlet side.

2.7 GAS FURNACES

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.

B. CSA Approval: Designed and certified by and bearing label of CSA.

C. Burners: Stainless steel.
 1. Fuel: Natural gas.
 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.

D. Heat-Exchanger and Drain Pan: Stainless steel.

E. Venting, Power: Power vented, with integral, motorized centrifugal fan interlocked with gas valve.

F. Safety Controls:
2.8 DAMPERS

A. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel dampers with compressible jamb seals and extruded-vinyl blade edge seals in parallel-blade arrangement with zinc-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft. at 1-inch wg and 8 cfm/sq. ft. at 4-inch wg.

B. Electronic Damper Operators:
 1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
 3. Operator Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 4. Size dampers for running torque calculated as follows:
 b. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 c. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 d. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
 5. Coupling: V-bolt and V-shaped, toothed cradle.
 6. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 7. Fail-Safe Operation: Mechanical, spring-return mechanism with external, manual gear release on nonspring-return actuators.
 10. Proportional Signal: 2 to 10 V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
 11. Temperature Rating: Minus 22 to plus 122 deg F.
 12. Run Time: 12 seconds open, 5 seconds closed.

2.9 ELECTRICAL POWER CONNECTIONS

A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.10 CONTROLS

A. Control equipment and sequence of operation are specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."

B. DDC Controller:
 1. Controller shall have volatile-memory backup.
 2. Refer to drawings for requirements for unit sequence of control operation.

C. Interface Requirements for HVAC Instrumentation and Control System:
 1. Provide BACnet compatible interface for central HVAC control workstation for the following:
 a. Adjusting set points.
 b. Monitoring supply fan start, stop, and operation.
 c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature and humidity.
 d. Monitoring occupied and unoccupied operations.
 e. Monitoring constant and variable motor loads.
 f. Monitoring variable-frequency drive operation.
 g. Monitoring cooling load.
 h. Monitoring economizer cycles.
 i. Monitoring air-distribution static pressure and ventilation air volume.
2.11 ROOF CURBS

A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C1071, Type I or II.
 b. Thickness: 1-1/2 inches.
 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C916, Type I.

C. Curb Dimensions: Height of 24 inches.

2.12 ACCESSORIES

A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

B. Factory- or field-installed, demand-controlled ventilation.

C. Safeties:
 1. Smoke detector.
 2. Condensate overflow switch.
 3. High and low pressure control.

D. Hail guards of galvanized steel, painted to match casing.

E. Outdoor-air intake weather hood.

2.13 MATERIALS

A. Steel:
 1. ASTM A36/A36M for carbon structural steel.
 2. ASTM A568/A568M for steel sheet.

B. Stainless Steel:
 1. Manufacturer's standard grade for casing.
 2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A653/A653M.

2.14 SOURCE QUALITY CONTROL

A. AHRI Compliance:
 1. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.
 2. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
 3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
 4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.

B. AMCA Compliance:
1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
2. Damper leakage tested according to AMCA 500-D.
3. Operating Limits: Classify according to AMCA 99.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

B. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction. Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment provided.

3.2 PIPING CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to RTU, allow space for service and maintenance.

C. Connect piping to unit mounted on vibration isolators with flexible connectors.

D. Connect condensate drain pans using minimum 1” NPS 1-1/4, ASTM B88, Type M copper tubing. Extend to nearest equipment or roof drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

E. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

3.3 DUCT CONNECTIONS

A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate general arrangement of ducts. The following are specific connection requirements:
1. Install ducts to termination at top of roof curb.
2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
4. Install return-air duct continuously through roof structure.

3.4 ELECTRICAL CONNECTIONS

A. Connect electrical wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
1. Nameplate shall be laminated acrylic or melamine plastic signs as specified in Section 260553 "Identification for Electrical Systems."
2. Locate nameplate where easily visible.

3.5 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.
B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Perform tests and inspections.

D. Tests and Inspections:
 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. RTU will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 237416.11
SECTION 237416.13 - PACKAGED, LARGE-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes packaged, large-capacity (greater than 20-ton), rooftop air conditioning units (RTUs) with the following components:
 1. Casings.
 2. Fans, drives, and motors.
 3. Coils.
 4. Refrigerant circuit components.
 5. Air filtration.
 7. Dampers.
 8. Electrical power connections.
 9. Controls.
 10. Roof curbs.
 11. Accessories.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of RTU.

B. Shop Drawings: For each packaged, large-capacity, rooftop air-conditioning units.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.

B. Sample Warranty: For manufacturer's warranty.

C. Source quality-control reports.

D. System startup reports.

E. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.5 WARRANTY

A. Warranty: Manufacturer agrees to repair or replace (parts and labor) components of outdoor, semi-custom, air-handling unit that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: One year from date of Substantial Completion.
 2. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.
 3. Warranty Period for Compressors: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Trane.
 2. YORK; a Johnson Controls company.

2.2 UNIT CASINGS
A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Double-Wall Construction:
 1. Outside Casing Wall: Galvanized steel, minimum 18 gauge thick with manufacturer's standard finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
 2. Inside Casing Wall: G90-coated galvanized steel, minimum 0.028 inch thick.
 3. Floor Plate: G90 galvanized steel, minimum 18 gauge thick.
 4. Casing Insulation:
 b. Insulation Thickness: 1 inch.
 c. Thermal Break: Provide continuity of insulation with no through-casing metal in casing walls, floors, or roof of unit.

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. Static-Pressure Classifications:
 1. For Unit Sections Upstream of Fans: Minus 3-inch wg.
 2. For Unit Sections Downstream and Including Fans: 4-inch wg.

E. Panels and Doors:
 1. Access Doors:
 a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit’s internal components.
 2. Locations and Applications:
 a. Fan Section: Doors.
 b. Access Section: Doors.
 c. Coil Section: Doors.
 d. Damper Section: Doors.
 e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Doors.

F. Condensate Drain Pans:
 1. Location: Each type of cooling coil.
 2. Construction:
 3. Drain Connection:
 a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 4. Slope: Minimum 0.125-in./ft. slope, to comply with ASHRAE 62.1, in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 5. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1.
 7. Depth: A minimum of 2 inches deep.
 8. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
2.3 FANS, DRIVES, AND MOTORS

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

B. Supply-Air Fans: Centrifugal, plenum, rated according to AMCA 210; galvanized or painted steel; mounted on solid-steel shaft.
 1. Shafts: With field-adjustable alignment.
 2. Shaft Bearings:
 a. Turned, ground, and polished hot-rolled steel with keyway.
 3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 a. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 4. Mounting: For internal vibration isolation. Factory-mount fans with manufacturer's standard restrained vibration isolation mounting devices having a minimum static deflection of 1 inch.
 5. Shaft Lubrication Lines: Extended to a location outside the casing.

C. Drives, Direct: Factory-mounted, direct drive.

D. Condenser-Coil Fan: Variable-speed propeller, mounted on shaft of permanently lubricated motors.

E. Relief-Air Fan: Forward curved, shaft mounted on permanently lubricated motor.

F. Motors:
 1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 3. Enclosure Type: Totally enclosed, fan cooled.
 4. Enclosure Materials: Cast iron.
 5. Efficiency: Premium efficient as defined in NEMA MG 1.

2.4 COILS

A. General Requirements for Coils:
 1. Comply with AHRI 410.
 2. Fabricate coils section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 3. Coils shall not act as structural component of unit.

B. Supply-Air Refrigerant Coil:
 1. Tubes: Copper.
 2. Fins:
 b. Fin Spacing: Maximum 12 fins per inch.
 3. Fin and Tube Joints: Mechanical bond.
 5. Frames: Galvanized steel.
 6. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

C. Outdoor-Air Refrigerant Coil:
 1. Tubes: Copper.
 2. Fins:
2.5 REFRIGERANT CIRCUIT COMPONENTS

A. Compressor: Hermetic, variable speed scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

B. Refrigeration Specialties:
1. Refrigerant: R-410A.
2. Expansion valve with replaceable thermostatic element.
3. Refrigerant filter/dryer.
5. Automatic-reset low-pressure safety switch.
8. Brass service valves installed in compressor suction and liquid lines.

2.6 AIR FILTRATION

A. Panel Filters:
1. Description: Pleated factory-fabricated, self-supported, disposable air filters with holding frames.
2. Filter Unit Class: UL 900.
3. Media: Interlaced glass, synthetic or cotton fibers coated with nonflammable adhesive and antimicrobial coating.
4. Filter-Media Frame: Beverage board with perforated metal retainer, or metal grid, on outlet side.

2.7 GAS FURNACES

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.

B. CSA Approval: Designed and certified by and bearing label of CSA.

C. Burners: Stainless steel.
1. Fuel: Natural gas.
2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.

D. Heat-Exchanger and Drain Pan: Stainless steel.

E. Venting, Power: Power vented, with integral, motorized centrifugal fan interlocked with gas valve.

F. Safety Controls:

2.8 DAMPERS

A. Dampers: Comply with requirements in Section 230923.12 "Control Dampers."

B. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel dampers with compressible jamb seals and extruded-vinyl blade edge seals in parallel-blade arrangement with zinc-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft at 1-inch wg and 8 cfm/sq. ft at 4-inch wg

C. Barometric relief dampers.
D. Electronic Damper Operators:
1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
3. Operator Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
4. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
6. Size dampers for running torque calculated as follows:
 c. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 d. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
8. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
11. Power Requirements (Modulating): Maximum 10 VA at 24 V ac or 8 W at 24 V dc.
12. Proportional Signal: 2 to 10 V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
13. Temperature Rating: Minus 22 to plus 122 deg F.

2.9 ELECTRICAL POWER CONNECTIONS
A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.10 CONTROLS
A. DDC Controller:
1. Controller shall have volatile-memory backup.
2. Refer to drawings for requirements for unit sequence of operation.
B. Interface Requirements for HVAC Instrumentation and Control System:
1. Provide BACnet compatible interface for central HVAC control workstation for the following:
 a. Adjusting set points.
 b. Monitoring supply fan start, stop, and operation.
 c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature and humidity.
 d. Monitoring occupied and unoccupied operations.
 e. Monitoring constant and variable motor loads.
 f. Monitoring variable-frequency drive operation.
 g. Monitoring cooling load.
 h. Monitoring economizer cycles.
 i. Monitoring air-distribution static pressure and ventilation air volume.

2.11 ROOF CURBS
A. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or II.
b. Thickness: 2 inches.

2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C916, Type I.

B. Curb Dimensions: Height of 24 inches.

2.12 ACCESSORIES

A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

B. Factory- or field-installed demand-controlled ventilation.

C. Safeties:
 1. Smoke detector.
 2. High and low pressure control.

D. Hail guards of galvanized steel, painted to match casing.

E. Outdoor air intake weather hood with moisture eliminator.

2.13 MATERIALS

A. Steel:
 1. ASTM A36/A36M for carbon structural steel.
 2. ASTM A568/A568M for steel sheet.

B. Stainless Steel:
 1. Manufacturer's standard grade for casing.
 2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A653/A653M.

E. Comply with Section 230546 "Coatings for HVAC" for corrosion-resistant coating.

F. Corrosion-Resistant Coating: Coat with a corrosion-resistant coating capable of withstanding a 3000-hour salt-spray test according to ASTM B117.
 1. Standards:
 a. ASTM B117 for salt spray.
 b. ASTM D2794 for minimum impact resistance of 100 in-lb.
 c. ASTM B3359 for cross-hatch adhesion of 5B.
 3. Thickness: 1 mil.
 4. Gloss: Minimum gloss of 60 on a 60-degree meter.

2.14 SOURCE QUALITY CONTROL

A. AHRI Compliance:
 1. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
 2. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.
 3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
 4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.
B. AMCA Compliance:
 1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
 2. Damper leakage tested in accordance with AMCA 500-D.
 3. Operating Limits: Classify according to AMCA 99.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

B. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA’s "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction. Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment provided.

3.2 PIPING CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to RTU, allow space for service and maintenance.

C. Connect piping to unit mounted on vibration isolators with flexible connectors.

D. Connect condensate drain pans using minimum 1” NPS 1-1/4, ASTM B88, Type M copper tubing. Extend to nearest roof drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

E. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

3.3 DUCT CONNECTIONS

A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
 4. Install return-air duct continuously through roof structure.

3.4 ELECTRICAL CONNECTIONS

A. Connect electrical wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs as specified in Section 260553 "Identification for Electrical Systems."
 2. Locate nameplate where easily visible.

3.5 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.
B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections:
 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. RTU will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 237416.13
SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.3 INFORMATIONAL SUBMITTALS
 A. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-up."
 C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.6 WARRANTY
 A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period:
 a. For Compressor: One year from date of Substantial Completion.
 b. For Parts: One year from date of Substantial Completion.
 c. For Labor: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Daikin.
 2. LG.
 3. Mitsubishi.
 4. Trane
2.2 INDOOR UNITS 5 TONS OR LESS

A. Concealed Evaporator-Fan Components:
 1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 2. Insulation: Faced, glass-fiber duct liner.
 4. Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch; leak tested to 300 psig underwater; with a two-position control valve.
 6. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
 7. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Wiring Terminations: Connect motor to chassis wiring with plug connection.
 8. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 10. Condensate Drain Pans:
 a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1
 2) Depth: A minimum of 2 inches deep.
 b. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 1) Minimum Connection Size: NPS 1Pan-Top Surface Coating: Asphaltic waterproofing compound.
 d. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

B. Wall-Mounted, Evaporator-Fan Components:
 1. Cabinet: Enamel-coated steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 206/110.
 5. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Enclosure Type: Totally enclosed, fan cooled.
 d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 f. Mount unit-mounted disconnect switches on exterior
 g. ASHRAE compliance in "Airstream Surfaces" Subparagraph below may be required to comply with Project requirements or authorities having jurisdiction. Retain first subparagraph to comply with LEED Prerequisite IEQ 1.
 6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 7. Condensate Drain Pans:
 a. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1
 2) Depth: A minimum of 1"
c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 1) Minimum Connection Size: NPS 1

d. Pan-Top Surface Coating: Asphaltic waterproofing compound.

8. Air Filtration Section:
 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

 b. Disposable Panel Filters:
 1) Factory-fabricated, viscous-coated, flat-panel type.
 2) Thickness: 1 inch

2.3 OUTDOOR UNITS 5 TONS OR LESS

A. Air-Cooled, Compressor-Condenser Components:
 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
 b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 c. Refrigerant Charge: R-410A
 d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.
 4. Fan: Aluminum-propeller type, directly connected to motor.
 5. Motor: Permanently lubricated, with integral thermal-overload protection.
 6. Low Ambient Kit: Permits operation down to 45 deg F

2.4 ACCESSORIES

A. Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence and Operations for HVAC Controls."

B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.

C. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 1. Compressor time delay.
 2. 24-hour time control of system stop and start.
 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 4. Fan-speed selection including auto setting.

D. Automatic-reset timer to prevent rapid cycling of compressor.

E. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

F. Drain Hose: For condensate.

G. Additional Monitoring:
 1. Monitor constant and variable motor loads.
 3. Monitor economizer cycle.
 4. Monitor cooling load.
 5. Monitor air distribution static pressure and ventilation air volumes.
2.5 CAPACITIES AND CHARACTERISTICS

A. Cooling Capacity: As noted on drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install roof-mounted, compressor-condenser components on equipment supports specified in Section 077200 "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

D. Equipment Mounting:
 1. Install ground-mounted, compressor-condenser components on polyethylene mounting base.
 2. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."

E. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
 1. Water Coil Connections: Comply with requirements specified in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties."Section 15179 "Hydronic Piping Specialties." Connect hydronic piping to supply and return coil connections with shutoff-duty valve and union or flange on the supply connection and with throttling-duty valve and union or flange on the return connection.
 2. Remote, Water-Cooled Condenser Connections: Comply with requirements specified in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties."Section 15179 "Hydronic Piping Specialties." Connect hydronic piping to supply and return connections with shutoff-duty valve and union or flange on the supply connection and with throttling-duty valve and union or flange on the return connection.

B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126
SECTION 238239.13 - CABINET UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes cabinet unit heaters with centrifugal fans and hot-water coils.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings:
 1. Include plans, elevations, sections, and details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include location and size of each field connection.
 4. Include details of anchorages and attachments to structure and to supported equipment.
 5. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 6. Indicate location and arrangement of piping valves and specialties.
 7. Indicate location and arrangement of integral controls.

B. Samples: For each exposed product and for each color and texture specified.

1.3 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which cabinet unit heaters will be attached.
 3. Method of attaching hangers to building structure.
 4. Size and location of initial access modules for acoustical tile.
 5. Items penetrating finished ceiling, including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 6. Perimeter moldings for exposed or partially exposed cabinets.

B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Trane Inc.
 2. Qmark
 3. Raywall
2.2 DESCRIPTION

A. Factory-assembled and -tested unit complying with AHRI 440.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 PERFORMANCE REQUIREMENTS

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

2.4 COIL SECTION INSULATION

A. Insulation Materials: ASTM C 1071; surfaces exposed to airstream shall have aluminum-foil facing to prevent erosion of glass fibers.
 1. Thickness: 1/2 inch
 2. Thermal Conductivity (k-Value): 0.26 Btu x in./h x sq. ft. at 75 deg F mean temperature.
 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.
 4. Adhesive: Comply with ASTM C 916 and with NFPA 90A or NFPA 90B.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.5 CABINETS

A. Material: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.
 1. Vertical Unit, Exposed Front Panels: Minimum 0.0677-inch thick galvanized sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
 2. Horizontal Unit, Exposed Bottom Panels: Minimum 0.0677-inch thick galvanized sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
 3. Recessed Flanges: Steel, finished to match cabinet.
 4. Control Access Door: Key operated.
 5. Base: Minimum 0.0677-inch thick steel, finished to match cabinet, 4 high with leveling bolts.
 6. Extended Piping Compartment: 8-inch wide piping end pocket.
 7. False Back: Minimum 0.0428-inch thick steel, finished to match cabinet.

2.6 HEATING COIL

A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch. Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F at any point during normal operation.
 2. Wiring Terminations: Stainless-steel or corrosion-resistant material.

2.7 CONTROLS

A. Fan and Motor Board: Removable.
 1. Fan: Forward curved, high static, double width, centrifugal, directly connected to motor; thermoplastic or painted-steel wheels and aluminum, painted-steel, or galvanized-steel fan scrolls.
 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.

B. Basic Unit Controls:
 1. Control voltage transformer.
 2. Wall mounted thermostat with the following features:
 b. Fan on-auto switch.
d. Adjustable deadband.
e. Concealed set point.
f. Concealed indication.

B. Electrical Connection: Factory-wired motors and controls for a single field connection.

2.8 CAPACITIES AND CHARACTERISTICS
A. As scheduled on drawings.

2.9 EXAMINATION
A. Examine areas to receive cabinet unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for piping and electrical connections to verify actual locations before unit-heater installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

2.10 INSTALLATION
A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Section 079200 "Joint Sealants."
B. Install cabinet unit heaters to comply with NFPA 90A.
C. Suspend cabinet unit heaters from structure with elastomeric hangers.
D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
E. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

2.11 CONNECTIONS
A. Piping installation requirements are specified in Section 232113 "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to machine to allow service and maintenance.
C. Connect supply and return ducts to cabinet unit heaters with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
D. Comply with safety requirements in UL 1995.
E. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of cabinet unit heater. Hydronic specialties are specified in Section 232113 "Hydronic Piping".
F. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

2.12 FIELD QUALITY CONTROL
A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
B. Units will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 238239.13
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves for raceways and cables.
 2. Sleeve seals.
 4. Common electrical installation requirements.

1.2 SUBMITTALS

A. Product Data: For sleeve seals.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.
 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 3. Pressure Plates: Plastic. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install
components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical
equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum
interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs,
concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used.
Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings
compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated
otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth;
 protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or
cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07
Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway
and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials.
Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units
applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve
seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical
sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular
clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size.
Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space
between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to
expand and make watertight seal.
3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly.

END OF SECTION 260500
SECTION 260519 - CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 3. Sleeves and sleeve seals for cables.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Field quality-control test reports.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Aluminum and Copper Conductors: Comply with NEMA WC 70.

B. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN.

C. Metal-clad Cable, Type MC:
 1. Type MC cable shall be U.L. listed. MC cable materials, marking, installation methods and permitted usage shall comply with Article 334 of the N.E.C. and with these specifications.
 2. All type MC cables shall contain conductors suitable for the application.
 3. All type MC cables shall contain a separate insulated green grounding conductor along with the current carrying conductors sized in accordance with the NEC.

2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 3. O-Z/Gedney; EGS Electrical Group LLC.
 4. 3M; Electrical Products Division.
 5. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
2.4 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Plastic. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper for feeders smaller than No. 1 AWG; copper or 8000 series aluminum alloy for feeders No. 1 AWG and larger. (Use of aluminum alloy conductors on feeders shall be submitted as a bid alternate). Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN-THWN, single conductors in raceway.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

D. Branch Circuits Concealed in Ceilings, Walls, and Partitions:
 1. Type THHN-THWN, single conductors in raceway or metal-clad cable, type MC.
 a. Type MC cable may be used in lieu of single conductors in raceway only for branch circuits (with up to four conductors not including ground conductor) and only in dry concealed locations above grade except where specifically not permitted by the NEC or this specification.
 b. Type MC cable shall not be permitted for the following uses:
 1) Concealed within walls and partitions (MC cable allowed only above ceilings).
 2) Connections to panelboards (MC cable can terminate in a wireway gutter located above the panel, and above the accessible ceiling).
 3) Where exposed to view.
 4) Where exposed to damage.
 5) Hazardous locations.
 6) Wet locations.
 c. UL listed connectors with insulated bushings and offset screw connections shall be utilized for MC cable installations.
 d. Type MC cable shall be supported and secured within twelve (12) inches of every outlet box or fitting.
 e. Type MC cable whips may be utilized in lieu of flexible conduit and wire for wiring from light fixtures in accessible ceilings to junction boxes above ceiling. Cable whip lengths shall be sufficient to allow for relocating each light fixture within a five (5) foot radius of its installed location.

E. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

F. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
G. Class 1 Control Circuits: Type THHN-THWN, in raceway.

H. Class 2 Control Circuits: Type THHN-THWN, in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

F. Support and secure type MC cable within twelve (12) inches of every outlet box or fitting.

G. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

H. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unsPLICed conductors.

I. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

END OF SECTION 260519
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. RS-232 cabling.
 3. RS-485 cabling.
 4. Low-voltage control cabling.
 5. Control-circuit conductors.
 6. Identification products.

1.2 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Field quality-control reports.
C. Maintenance data.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of an NRTL.
B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 450 or less.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
B. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.1 PATHWAYS

A. Support of Open Cabling: NRTL labeled for support of cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 2. Lacing bars, spools, J-hooks, and D-rings.
 3. Straps and other devices.
B. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems." Flexible metal conduit shall not be used.
 1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.
2.2 LOW-VOLTAGE CONTROL CABLE

A. Paired Cable: NFPA 70, Type CMG.
 1. One pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with UL 1581.

B. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 1. One pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with NFPA 262.

C. Paired Cable: NFPA 70, Type CMG.
 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with UL 1581.

D. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned-copper conductors.
 2. Fluorinated ethylene propylene insulation.
 3. Unshielded.

2.3 CONTROL-CIRCUIT CONDUCTORS

A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway, complying with UL 83.

B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway, complying with UL 83.

C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or Type TF, complying with UL 83.

2.4 IDENTIFICATION PRODUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation.
 2. HellermannTyton.
 3. Kroy LLC.
 4. Panduit Corp.

B. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

C. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

PART 3 - EXECUTION

3.1 INSTALLATION OF PATHWAYS

A. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

B. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.
3.2 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. Installation of Control-Circuit Conductors:
 1. Install wiring in raceways. Comply with requirements specified in Division 26 Section "Raceway and Boxes for Electrical Systems."

C. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

3.3 REMOVAL OF CONDUCTORS AND CABLES

A. Remove abandoned conductors and cables.

3.4 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits, No 14 AWG.
 2. Class 2 low-energy, remote-control, and signal circuits, No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm, and signal circuits, No 12 AWG.

3.5 FIRESTOPPING

A. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.6 GROUNDING

A. For low-voltage wiring and cabling, comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems."

3.7 IDENTIFICATION

A. Identify system components, wiring, and cabling according to TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

END OF SECTION 260523
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes methods and materials for grounding systems and equipment.

1.2 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Field quality-control test reports.

1.3 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS
 A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

2.2 CONNECTORS
 A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
 B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.
 C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES
 A. Ground Rods: Copper-clad steel; 3/4 inch nominal diameter by 10 feet in length.

PART 3 - EXECUTION

3.1 APPLICATIONS
 A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.
 B. Underground Grounding Conductors: Install bare copper conductor, No. 2/0 AWG minimum. Bury at least 24 inches below grade.
 C. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.
3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

D. Grounding bus riser as indicated on Drawings.

E. Metal Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.
1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.
2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:
1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.3 SUBMITTALS

A. Product Data: For steel slotted support systems.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 1. Trapeze hangers. Include Product Data for components.
 2. Steel slotted channel systems. Include Product Data for components.
 3. Equipment supports.

C. Welding certificates.

1.4 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
6. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
 5. To Light Steel: Sheet metal screws.
 6. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases 6 inches tall and 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base. Furnish and install concrete base at all floor-mounted electrical equipment including panelboards and transformers.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete."

C. Anchor equipment to concrete base.
 1. Place and secure anchorage devices. Use supported equipment manufacturer’s setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer’s written instructions.
3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
B. See Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks and manholes, and underground handholes, boxes, and utility construction.

1.2 SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, details, and attachments to other work.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING
A. Rigid Steel Conduit: ANSI C80.1.
B. IMC: ANSI C80.6.
C. EMT: ANSI C80.3.
D. FMC: Zinc-coated steel.
E. LFMC: Flexible steel conduit with PVC jacket.
F. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 2. Fittings for EMT: compression type.

2.2 NONMETALLIC CONDUIT AND TUBING
B. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.
C. LFNC: UL 1660.
D. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.
E. Fittings for LFNC: UL 514B.
2.3 METAL WIREWAYS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper B-Line, Inc.
 2. Hoffman.
 3. Square D; Schneider Electric.

B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type.

E. Finish: Manufacturer's standard enamel finish.

2.4 NONMETALLIC WIREWAYS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hoffman.
 2. Lamson & Sessions; Carlon Electrical Products.

C. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.

D. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

B. Cast-Metal Outlet and Device Boxes: NEMA FB 1, aluminum, Type FD, with gasketed cover.

C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

D. Metal Floor Boxes: Cast metal, fully adjustable, rectangular.

E. Nonmetallic Floor Boxes: Nonadjustable, round.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.

H. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

I. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 1. Exposed Conduit: Rigid steel conduit.
 2. Concealed Conduit, Aboveground: EMT.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Comply with the following indoor applications, unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 a. Loading dock.
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT or metal-clad cable, type MC.
 a. EMT or metal-clad cable, type MC.
 1) Type MC cable may be used in lieu of EMT conduit only for branch circuits (with up to four conductors not including ground conductor) and only in dry concealed locations above grade except where specifically not permitted by the NEC or this specification.
 a) Type MC cable shall not be permitted for the following uses:
 1. Concealed within walls and partitions (MC cable allowed only above ceilings).
 2. Connections to panelboards (MC cable can terminate in a wireway gutter located above the panel, and above the accessible ceiling).
 3. Where exposed to view.
 4. Where exposed to damage.
 5. Hazardous locations.
 6. Wet locations.
 b) UL listed connectors with insulated bushings and offset screw connections shall be utilized for MC cable installations.
 c) Type MC cable shall be supported and secured within twelve (12) inches of every outlet box or fitting.
 d) Type MC cable whips may be utilized in lieu of flexible conduit and wire for wiring from light fixtures in accessible ceilings to junction boxes above ceiling. Cable whip lengths shall be sufficient to allow for relocating each light fixture within a five (5) foot radius of its installed location.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 6. Damp or Wet Locations: Rigid steel conduit.
 7. Raceways for Optical Fiber or Communications Cable: EMT.
 8. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

3.2 INSTALLATION

A. Comply with NEC 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

H. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor.

I. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

J. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

K. Raceways for Optical Fiber and Communications Cable: Install as follows:
 1. 3/4-Inch Trade Size: Install raceways in maximum lengths of 50 feet.
 2. 1-Inch Trade Size and Larger: Install raceways in maximum lengths of 75 feet.
 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

L. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where otherwise required by NFPA 70.

M. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

N. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

O. Set metal floor boxes level and flush with finished floor surface.

P. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:
 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches in nominal diameter.
 2. Install backfill as specified in Division 31 Section "Earth Moving."
 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."
 4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
3.4 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

END OF SECTION 260533
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
1. Identification of power and control cables.
2. Identification for conductors.
4. Warning labels and signs.
5. Instruction signs.
7. Miscellaneous identification products.

1.2 SUBMITTALS

A.Product Data: For each electrical identification product indicated.

1.3 QUALITY ASSURANCE

A. Comply with ANSI A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

PART 2 - PRODUCTS

2.1 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.2 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.
B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.3 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
C. Baked-Enamel Warning Signs:
1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
2. 1/4-inch grommets in corners for mounting.
3. Nominal size, 7 by 10 inches.

D. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS
 MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL
 EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.4 EQUIPMENT IDENTIFICATION LABELS

A. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray
 background. Minimum letter height shall be 3/8 inch.

2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements.
 Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts
 and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Location: Install identification materials and devices at locations for most convenient viewing without interference
 with operation and maintenance of equipment.

B. Apply identification devices to surfaces that require finish after completing finish work.

C. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods
 recommended by manufacturer of identification device.

D. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location
 and substrate.

3.2 IDENTIFICATION SCHEDULE

A. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes,
 and handholes, use color-coding conductor tape to identify the phase.
 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for
 ungrounded service, feeder and branch-circuit conductors.
 a. Color shall be factory applied.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6
 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of
 tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable
 markings.

B. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type
 labels.

C. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication,
 and control wiring and optical fiber cable.
 1. Install underground-line warning tape for both direct-buried cables and cables in raceway.
a. Tape shall be red in color, 6” wide & 4 mils thick, alkali & acid resistant with metallic core.

D. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

E. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

F. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

END OF SECTION 260553
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Time switches.
 2. Photoelectric switches.
 4. Indoor occupancy sensors.
 5. Lighting contactors.

1.2 SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 1. Interconnection diagrams showing field-installed wiring.
 2. Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Industries, Inc.
 2. Intermatic, Inc.
 3. Invensys Controls.
 4. Leviton Manufacturing Co., Inc.
 5. NSI Industries LLC.
 6. Tyco Electronics.

B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Contact Configuration: SPST.
 3. Contact Rating: 20-A ballast load, 120-/240-V ac.
 4. Programs: Two on-off set points on a 24-hour schedule, allowing different set points for each day of the week and an annual holiday schedule that overrides the weekly operation on holidays.
 5. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on selected channels.
 6. Astronomic Time: All channels.
 7. Automatic daylight savings time changeover.
 8. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Industries, Inc.
 2. Intermatic, Inc.
 3. NSI Industries LLC.
 4. Tyco Electronics.
B. Description: Solid state, with SPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 3. Time Delay: Fifteen second minimum, to prevent false operation.
 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

2.3 DAYLIGHT-HARVESTING DIMMING CONTROLS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Industries, Inc.
 2. Hubbell Building Automation, Inc.
 3. Leviton Manufacturing Co., Inc.
 4. Lithonia Lighting; Acuity Brands Lighting, Inc.
 5. Watt Stopper.

B. System Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.
 1. Lighting control set point is based on two lighting conditions:
 a. When no daylight is present (target level).
 b. When significant daylight is present.
 2. System programming is done with two hand-held, remote-control tools.
 a. Initial setup tool.
 b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.

C. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with separate controller unit, to detect changes in lighting levels that are perceived by the eye.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Sensor Output: 0- to 10-V dc to operate electronic dimming ballasts. Sensor is powered by controller unit.
 3. Power Pack: Sensor has 24-V dc, Class 2 power source, as defined by NFPA 70.
 4. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc.

2.4 INDOOR OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Industries, Inc.
 2. Hubbell Building Automation, Inc.
 3. Leviton Manufacturing Co., Inc.
 4. Lightolier Controls.
 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 7. Sensor Switch, Inc.
 8. Square D.

B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 30 minutes.
 3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
 4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 5. Mounting:
a. Sensor: Suitable for mounting in any position on a standard outlet box.
b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.

C. PIR Type: Ceiling mounted; detect occupants in coverage area by their heat and movement.
 1. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in..

D. Ultrasonic Type: Ceiling mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy.
 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.

E. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 1. Sensitivity Adjustment: Separate for each sensing technology.
 2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.

2.5 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Industries, Inc.
 2. Hubbell Building Automation, Inc.
 3. Leviton Manufacturing Co., Inc.
 4. Lightolier Controls.
 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 7. Sensor Switch, Inc.
 8. Square D.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.

2.6 LIGHTING CONTACTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. ASCO Power Technologies, LP; a business of Emerson Network Power.
 5. Square D.

B. Description: Electrically operated and electrically held, combination-type lighting contactors with nonfused disconnect, complying with NEMA ICS 2 and UL 508.
 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 3. Enclosure: Comply with NEMA 250.
 4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.
C. Interface with DDC System for HVAC: Provide hardware interface to enable the DDC system for HVAC to monitor and control lighting contactors.
 2. Control: On-off operation.

2.7 EMERGENCY SHUNT RELAY

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Lighting Control and Design.
 2. Watt Stopper.

B. Description: Normally closed, electrically held relay, arranged for wiring in parallel with manual or automatic switching contacts; complying with UL 924.
 1. Coil Rating: 120 or 277 V.

2.8 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG.

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG.

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG.

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

B. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 WIRING INSTALLATION

A. Wiring Method: Minimum conduit size is 3/4 inch.

B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

A. Identify components and power and control wiring.
 1. Identify controlled circuits in lighting contactors.
 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
B. Lighting control devices will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923
SECTION 260943 - RELAY-BASED LIGHTING CONTROLS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes: Lighting control panels using mechanically held relays for switching.

1.2 DEFINITIONS
A. BAS: Building automation system.
B. DDC: Direct digital control.
C. IP: Internet protocol.
D. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for control modules, power distribution components, relays, manual switches and plates, and conductors and cables.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 3. Operational documentation for software and firmware.
B. Shop Drawings: For each relay panel and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail wiring partition configuration, current, and voltage ratings.
 4. Short-circuit current rating of relays.
 5. Wire Termination Diagrams and Schedules: Coordinate nomenclature and presentation with Drawings and block diagram. Differentiate between manufacturer-installed and field-installed wiring.
 6. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.

1.4 INFORMATIONAL SUBMITTALS
A. Software licenses and upgrades required by and installed for operation and programming of digital and analog devices.
B. Sample Warranty: For manufacturer's special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For lighting controls to include in emergency, operation, and maintenance manuals.
B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 3. Device address list.
 4. Printout of software application and graphic screens.
 5. Testing and adjusting of panic and emergency power features.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lighting Control Relays: Equal to 10 percent of amount installed, but no fewer than 10.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Handle and prepare panels for installation according to NECA 407.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of standalone multipreset modular dimming controls that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Damage from transient voltage surges.
 2. Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Sequence of Operations: Input signal from field-mounted manual switches, or digital signal sources, shall open or close one or more lighting control relays in the lighting control panels. Any combination of inputs shall be programmable to any number of control relays.

B. Interface with HVAC DDC System: Hardware and software shall interface with HVAC DDC system to monitor, control, display, and record data for use in processing reports.
 1. Hardwired Points:
 b. Control: On-off operation.
 2. Communication Interface: Comply with ASHRAE 135. The communication interface shall enable the HVAC DDC system operator to remotely control and monitor lighting from a HVAC DDC system operator workstation. Control features and monitoring points displayed locally at lighting panel shall be available through the HVAC DDC system.

C. Surge Protective Device: Factory installed as an integral part of control components or field-mounted surge suppressors complying with UL 1449, SPD Type 2.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with 47 CFR 15, Subparts A and B, for Class A digital devices.

F. Comply with UL 916.

2.2 NETWORKED LIGHTING CONTROL PANELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Crestron.
 2. Wattstopper.
 3. Lithonia, Acuity Brands Lighting.

B. Description: Lighting control panels using mechanically latched relays to control lighting and appliances. The panels shall be capable of being interconnected with digital communications to appear to the operator as a single lighting control system.

C. Lighting Control Panels:
 1. A single enclosure with incoming lighting branch circuits, control circuits, switching relays, and on-board timing and control unit.
 2. A vertical barrier separating branch circuits from control wiring.
D. Main Control Unit: Installed in the main lighting control panel only; powered from the branch circuit of the standard control unit.
 1. Ethernet Communications: Comply with TCP/IP protocol. The main control unit shall provide for programming of all control functions of the main and all networked slave lighting control panels including timing, sequencing, and overriding.
 2. Compliance with ASHRAE 135: Controllers shall support serial MS/TP and Ethernet IP communications, and shall be able to communicate directly via DDC system for HVAC RS-485 serial networks and Ethernet 10Base-T networks as a native device.
 3. Web Server: Display information listed below over a standard Web-enabled server for displaying information over a standard browser.
 a. A secure, password-protected login screen for modifying operational parameters, accessible to authorized users via Web page interface.
 b. Panel summary showing the master and slave panels connected to the controller.
 c. Controller diagnostic information.
 d. Show front panel mimic screens for setting up controller parameters, input types, zones, and operating schedules. These mimic screens shall also allow direct breaker control and zone overrides.
 4. Timing Unit:
 a. 365-day calendar, astronomical clock, and automatic adjustments for daylight savings and leap year.
 b. Clock configurable for 12-hour (A.M./P.M.) or 24-hour format.
 c. Four independent schedules, each having 24 time periods.
 d. Schedule periods settable to the minute.
 e. Day-of-week, day-of-month, day-of-year with one-time or repeating capability.
 f. 16 special date periods.
 5. Time Synchronization: The timing unit shall be updated not less than every 24 hour(s) with the network time server.
 6. Sequencing Control with Override:
 a. Automatic sequenced on and off switching of selected relays at times set at the timing unit, allowing timed overrides from external switches.
 b. Sequencing control shall operate relays one at a time, completing the operation of all connected relays in not more than 10 seconds.
 c. Override control shall allow any relay connected to it to be switched on or off by a field-deployed manual switch or by an automatic switch, such as an occupancy sensor.
 d. Override control "blinking warning" shall warn occupants approximately five minutes before actuating the off sequence.
 e. Activity log, storing previous relay operation, including the time and cause of the change of status.
 f. Download firmware to the latest version offered by manufacturer.

E. Standard Control Unit, installed in All Lighting Control Panels: Contain electronic controls for programming the operation of the relays in the control panel, contain the status of relays, and contain communications link to enable the digital functions of the main control unit. Comply with UL 916.
 1. Electronic control for operating and monitoring individual relays, and display relay on-time.
 2. Nonvolatile memory shall retain all setup configurations. After a power failure, the controller shall automatically reboot and return to normal system operation.
 3. Integral keypad and digital-display front panel for local setup, including the following:
 a. Blink notice, time adjustable from software.
 b. Ability to log and display relay on-time.
 c. Capability for accepting downloadable firmware so that the latest production features may be added in the future without replacing the module.

F. Relays: Electrically operated, mechanically held single-pole switch, rated at 20 A at 120-V tungsten, 30 A at 277-V ballast, 1.5 hp at 120 V, and 3 hp at 277 V. Short-circuit current rating shall be not less than 14 kA. Control shall be digital control network.

G. Power Supply: NFPA 70, Class 2, UL listed, sized for connected equipment, plus not less than 20 percent spare capacity. Powered from a dedicated branch circuit of the panelboard that supplies power to the line side of the relays, sized to provide control power for the local panel-mounted relays, bus system, low-voltage inputs, field-installed occupancy sensors, and low-voltage photo sensors.

H. Operator Interface: At the main control unit, provide interface for a tethered connection of a portable PC running MS Windows for configuring all networked lighting control panels using setup software designed for the specified operating system. Include one portable device for initial programming of the system and training of Owner's personnel. That device shall remain the property of Owner.
I. **Software:**
 1. Menu-driven data entry.
 2. Online and offline programming and editing.
 3. Provide for entry of the room or space designation for the load side of each relay.
 4. Monitor and control all relays, showing actual relay state and the name of the automatic actuating control, if any.
 5. Size the software appropriate to the system.

2.3 **MANUAL SWITCHES AND PLATES**

 A. Push-Button Switches: Modular, momentary contact, three wire, for operating one or more relays and to override automatic controls.
 1. Integral LED pilot light to indicate when circuit is on.

 B. Wall Plates: Single and multigang plates.

 C. Legend: Engraved or permanently silk-screened on wall plate where indicated. Use designations indicated on Drawings.

2.4 **FIELD-MOUNTED SIGNAL SOURCES**

 A. Daylight Harvesting Switching Controls: Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.

 B. Indoor Occupancy Sensors: Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.

2.5 **CONDUCTORS AND CABLES**

 A. Power Wiring to Supply Side of Class 2 Power Source: Not smaller than No. 12 AWG.

 B. Classes 2 and 3 Control Cables: Multiconductor cable with copper conductors not smaller than No. 18 AWG.

 C. Class 1 Control Cables: Multiconductor cable with copper conductors not smaller than No. 14 AWG.

 D. Digital and Multiplexed Signal Cables: Unshielded, twisted-pair cable with copper conductors. Comply with requirements in TIA/EIA-568-C.2, Category 6 for horizontal copper cable.

PART 3 - EXECUTION

3.1 **EXAMINATION**

 A. Receive, inspect, handle, and store panels according to NECA 407.

 B. Examine panels before installation. Reject panels that are damaged or rusted or have been subjected to water saturation.

 C. Examine elements and surfaces to receive panels for compliance with installation tolerances and other conditions affecting performance of the Work.

 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **WIRING INSTALLATION**

 A. Comply with NECA 1.

 B. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 1. Install plenum cable in environmental airspaces, including plenum ceilings.
C. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

3.3 PANEL INSTALLATION

A. Comply with NECA 1.

B. Install panels and accessories according to NECA 407.

C. Mount panel cabinet plumb and rigid without distortion of box.

D. Install filler plates in unused spaces.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals.

B. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

C. Create a directory to indicate loads served by each relay; incorporate Owner's final room designations. Obtain approval before installing. Use a PC to create directory; handwritten directories are unacceptable.

D. Lighting Control Panel Nameplates: Label each panel with a nameplate.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections with the assistance of a factory-authorized service representative.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers described below and low-voltage surge arrestors. Certify compliance with manufacturer's test parameters.
 a. Circuit-Breaker Tests:
 1) Compare nameplate with Drawings and Specifications.
 2) Inspect physical and mechanical conditions.
 3) Inspect anchorage and alignment.
 4) Verify that the units are clean.
 5) Operate the circuit breaker to ensure smooth operation.
 6) Inspect operating mechanism, contacts, and arc chutes in unsealed units.
 7) Verify correct operation of auxiliary features such as trip and pickup indicators, zone interlocking, electrical close and trip operation, trip-free, anti-pump function, and trip unit battery condition. Reset trip logs and indicators.
 b. Surge Arrestor Tests:
 1) Compare nameplate with the Contract Documents.
 2) Inspect physical and mechanical conditions.
 3) Inspect anchorage, alignment, grounding, and clearances.
 4) Verify that the units are clean.
 5) Verify that the ground lead on each device is individually attached to a ground bus or ground electrode.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Lighting control panel will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies lighting control panels and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.
3.6 STARTUP SERVICE
 A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Confirm correct communications wiring, initiate communications between panels, and program the lighting control system according to approved configuration schedules, time-of-day schedules, and input override assignments.

3.7 ADJUSTING
 A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 SOFTWARE SERVICE AGREEMENT
 A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

 B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.9 DEMONSTRATION
 A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the control unit and operator interface.

END OF SECTION 260943
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes distribution panelboards and lighting and appliance branch-circuit panelboards.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Include evidence of NRTL listing for series rating of installed devices.
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 7. Include wiring diagrams for power, signal, and control wiring.

C. Field quality-control reports.

D. Panelboard schedules for installation in panelboards.

E. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NEMA PB 1.

C. Comply with NFPA 70.

1.4 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

B. Enclosures: Flush- and surface-mounted cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

C. Incoming Mains Location: Top or bottom as required by project conditions.

D. Phase, Neutral, and Ground Buses: Hard-drawn copper, 98 percent conductivity.

E. Service Equipment Label: NRTL labeled for use as service equipment for panelboards with one or more main service disconnecting and overcurrent protective devices.

F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

2.2 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 2. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

D. Branch Overcurrent Protective Devices: For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 2. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 2. Square D; a brand of Schneider Electric.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
c. Long- and short-time time adjustments.
d. Ground-fault pickup level, time delay, and I2t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

2.5 ACCESSORY COMPONENTS AND FEATURES

A. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Receive, inspect, handle, store and install panelboards and accessories according to NECA 407.
B. Mount top of trim 90 inches above finished floor unless otherwise indicated.
C. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
D. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
E. Install filler plates in unused spaces.
F. Stub two 2-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub two 2-inch empty conduits into raised floor space or below slab not on grade (where applicable).
G. Arrange conductors in gutters into groups and bundle and wrap with wire ties.
H. Comply with NECA 1.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."
B. Create a directory to indicate installed circuit loads and incorporating Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Panelboards will be considered defective if they do not pass tests and inspections.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Snap switches and wall-box dimmers.
 3. Wall-switch and exterior occupancy sensors.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 1. Products: Leviton is basis of design. Subject to compliance with requirements, provide one of the following:
 a. Cooper; 5351 (single), 5352 (duplex).
 b. Hubbell; HBL5351 (single), CR5352 (duplex).
 c. Leviton; 5891 (single), 5352 (duplex).
 d. Pass & Seymour; 5381 (single), 5352 (duplex).

B. Tamper resistant Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; TRBR20 (duplex).
 b. Hubbell; BR20 (duplex).
 c. Leviton; TBR20 (duplex).
 d. Pass & Seymour; TR20 (duplex).

2.2 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 1. Products: Leviton is basis of design. Subject to compliance with requirements, provide one of the following:
 a. Cooper; GF20.
 b. Hubbell; GFRST20.
 c. Leviton; 7899.
 d. Pass & Seymour; 2084).
2.3 SNAP SWITCHES

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way).
 b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).
 c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way).
 d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way).

2.4 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable toggle switch; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 1. Dimmers shall be rated for load served. Coordinate with specific applications indicated on the Drawings.

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.5 OCCUPANCY SENSORS

A. Provide occupancy sensors as noted on Drawings. Provide all power packs and accessories for a complete and operable lighting control system as required to support sensors and control devices indicated on Drawings.

2.6 WALL PLATES

A. Single and combination types to match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: 0.035-inch-thick, satin-finished stainless steel.
 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations.”

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover.

2.7 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 3. Public Spaces: Gray devices, stainless plates.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:
 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:
1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtailed that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
1. Install dimmers within terms of their listing.
2. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Cartridge fuses rated 600-V ac and less for use in switches and enclosed controllers.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NEMA FU 1 for cartridge fuses.
C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussmann, Inc.
 2. Edison Fuse, Inc.
 3. Ferraz Shawmut, Inc.
 4. Littelfuse, Inc.
 5. Pre-approved equal.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

PART 3 - EXECUTION

3.1 FUSE APPLICATIONS

A. Feeders: Class L, time delay or Class J, time delay.
B. Motor Branch Circuits: Class J, time delay.
C. Other Branch Circuits: Class J, time delay.

3.2 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.3 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following individually mounted, enclosed switches and circuit breakers:
 1. Fusible switches.
 2. Nonfusible switches.
 4. Enclosures.

1.3 DEFINITIONS

A. GD: General duty.
B. GFCI: Ground-fault circuit interrupter.
C. HD: Heavy duty.
D. RMS: Root mean square.
E. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 4. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

B. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current curves, including selectable ranges for each type of circuit breaker.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
1.6 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

1.7 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 FUSIBLE AND NONFUSIBLE SWITCHES

A. Manufacturers:
 1. Eaton Corporation; Cutler-Hammer Products.
 2. General Electric Co.; Electrical Distribution & Control Division.
 4. Square D/Group Schneider.

B. Fusible Switch, 800 A and Smaller: NEMA KS 1, Type HD, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

C. Nonfusible Switch, 800 A and Smaller: NEMA KS 1, Type HD, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

D. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.

2.3 MOLDED-CASE CIRCUIT BREAKERS AND SWITCHES

A. Manufacturers:
 1. Eaton Corporation; Cutler-Hammer Products.
 2. General Electric Co.; Electrical Distribution & Control Division.
 4. Square D/Group Schneider.

B. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.
 2. GFCI Circuit Breakers: Single- and two-pole configurations with 5 or 30-mA trip sensitivity as indicated on drawings.

C. Molded-Case Circuit-Breaker Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical style suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 5. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
2.4 ENCLOSURES

A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
 1. Outdoor Locations: NEMA 250, Type 3R.
 2. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with applicable portions of NECA 1, NEMA PB 1.1, and NEMA PB 2.1 for installation of enclosed switches and circuit breakers.

B. Mount individual wall-mounting switches and circuit breakers with tops at uniform height, unless otherwise indicated. Anchor floor-mounting switches to concrete base.

3.3 IDENTIFICATION

A. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate as specified in Division 26 Section "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Prepare for acceptance testing as follows:
 1. Inspect mechanical and electrical connections.
 2. Verify switch and relay type and labeling verification.
 3. Verify rating of installed fuses.

3.5 CLEANING

A. On completion of installation, vacuum dirt and debris from interiors; do not use compressed air to assist in cleaning.

B. Inspect exposed surfaces and repair damaged finishes.

END OF SECTION 262816
SECTION 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes packaged engine-generator sets for standby power supply with the following features:
 1. Diesel engine.
 2. Unit-mounted cooling system.
 3. Unit-mounted control and monitoring.
 4. Outdoor enclosure.

B. See Division 26 Section "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.2 SUBMITTALS

A. Product Data: For each type of packaged engine generator and accessory indicated.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Manufacturer Seismic Qualification Certification: Submit certification that engine-generator set, batteries, battery racks, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Source quality-control test reports.

E. Field quality-control test reports.

F. Operation and maintenance data.

G. Warranty: Special warranty specified in this Section.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 200 miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with ASME B15.1.

E. Comply with NFPA 37.

F. Comply with NFPA 70.
G. Comply with NFPA 99.

H. Comply with NFPA 110 requirements for Level 1 emergency power supply system.

I. Comply with UL 2200.

J. Engine Exhaust Emissions: Comply with applicable state and local government requirements.

K. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.4 PROJECT CONDITIONS

A. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 1. Ambient Temperature: 5 to 40 deg C.
 2. Relative Humidity: 0 to 95 percent.

1.5 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Two (2) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Caterpillar; Engine Div.
 2. Generac Power Systems, Inc.
 3. Kohler Co.; Generator Division.
 5. MTU Onsite Energy

2.2 ENGINE-GENERATOR SET

A. Factory-assembled and -tested, engine-generator set.

B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.

C. Capacities and Characteristics:
 1. Power Output Ratings: Nominal ratings as indicated.
 2. Output Connections: Three-phase, four wire.
 3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

D. Generator-Set Performance:
 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
8. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE
B. Rated Engine Speed: 1800 rpm.
C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm.
D. Lubrication System: The following items are mounted on engine or skid:
 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
E. Engine Fuel System:
 2. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.
F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.
G. Governor: Adjustable isochronous, with speed sensing.
H. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine-generator-set mounting frame and integral engine-driven coolant pump.
 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 2. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
I. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 1. Minimum sound attenuation of 25 dB at 500 Hz.
 2. Sound level measured at a distance of 10 feet from exhaust discharge after installation is complete shall be 85 dBA or less.
K. Starting System: 24-V electric, with negative ground.
 1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 3. Cranking Cycle: As required by NFPA 110 for system level specified.
 4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least twice without recharging.
 a. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236.
2.4 FUEL OIL STORAGE

A. Comply with NFPA 30.

B. Base-Mounted Fuel Oil Tank: Factory installed and piped, complying with UL 142 fuel oil tank. Features include the following:
 1. Tank level indicator.
 2. Capacity: Fuel for eight hours' continuous operation at 100 percent rated power output.
 3. Vandal-resistant fill cap.

2.5 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms.

B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts generator set. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms.

C. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration.

D. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 1 system, and the following:
 1. AC voltmeter.
 2. AC ammeter.
 3. AC frequency meter.
 4. DC voltmeter (alternator battery charging).
 5. Engine-coolant temperature gage.
 6. Engine lubricating-oil pressure gage.
 7. Running-time meter.
 9. Generator-voltage adjusting rheostat.
 10. Fuel tank derangement alarm.
 11. Fuel tank high-level shutdown of fuel supply alarm.
 12. Generator overload.

E. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.

F. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.
 1. Overcrank shutdown.
 2. Coolant low-temperature alarm.
 3. Control switch not in auto position.
 4. Battery-charger malfunction alarm.
 5. Battery low-voltage alarm.

G. Remote Alarm Annunciator: Comply with NFPA 99. An LED labeled with proper alarm conditions shall identify each alarm event and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.
2.6 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with NEMA AB 1 and UL 489.
 1. Tripping Characteristic: Designed specifically for generator protection.
 2. Trip Rating: Matched to generator rating.
 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 4. Mounting: Adjacent to or integrated with control and monitoring panel.

2.7 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.

B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

C. Electrical Insulation: Class H or Class F.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.

E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

F. Enclosure: Dripproof.

G. Instrument Transformers: Mounted within generator enclosure.

H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.

I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

K. Subtransient Reactance: 12 percent, maximum.

2.8 OUTDOOR GENERATOR-SET ENCLOSURE

A. Description: Vandal-resistant, weatherproof steel housing, wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.

B. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.
 1. Louvers: Fixed-engine, cooling-air inlet and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.
 2. Automatic Dampers: At engine cooling-air inlet and discharge. Dampers shall be closed to reduce enclosure heat loss in cold weather when unit is not operating.

C. Interior Lights with Switch: Factory-wired, vaporproof-type fixtures within housing; arranged to illuminate controls and accessible interior. Arrange for external electrical connection.
 1. AC lighting system and connection point for operation when remote source is available.
 2. DC lighting system for operation when remote source and generator are both unavailable.

D. Convenience Outlets: Factory wired, GFCI. Arrange for external electrical connection.
2.9 VIBRATION ISOLATION DEVICES

A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a non-slip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 2. Durometer Rating: 70.
 3. Number of Layers: Four.

B. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic restraint.
 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to wind loads or if weight is removed; factory-drilled baseplate bonded to 1/4-inch-thick, elastomeric isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 2. Outside Spring Diameter: Not less than 80 percent of compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.10 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.11 SOURCE QUALITY CONTROL

A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
 2. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.

B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

C. Install packaged engine generator with restrained spring isolators having a minimum deflection of 1 inch on 4-inch-high concrete base. Secure sets to anchor bolts installed in concrete bases. Concrete base construction is specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

D. Install Schedule 40, black steel piping with welded joints and connect to engine muffler. Install thimble at wall. Piping shall be same diameter as muffler outlet. Flexible connectors and steel piping materials and installation requirements are specified in Division 23 Section "Hydronic Piping."
 1. Install condensate drain piping to muffler drain outlet full size of drain connection with a shutoff valve, stainless-steel flexible connector, and Schedule 40, black steel pipe with welded joints. Flexible connectors and piping materials and installation requirements are specified in Division 23 Section "Hydronic Piping."

E. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

F. Piping installation requirements are specified in Division 23 Sections. Drawings indicate general arrangement of piping and specialties.

G. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow service and maintenance.

H. Connect engine exhaust pipe to engine with flexible connector.
I. Connect fuel piping to engines with a gate valve and union and flexible connector.
 1. Natural-gas piping, valves, and specialties for gas distribution are specified in Division 23 Section "Facility Natural-Gas Piping."
 2. LP-gas piping, valves, and specialties for gas piping are specified in Division 23 Section "Facility Liquefied-Petroleum Gas Piping."

J. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

K. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

L. Identify system components according to Division 23 Section "Identification for HVAC Piping and Equipment" and Division 26 Section "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.
 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
 6. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg. Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
 7. Exhaust Emissions Test: Comply with applicable government test criteria.
 8. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.

C. Coordinate tests with tests for transfer switches and run them concurrently.

D. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

E. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

F. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

G. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

H. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.
3.3 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 263213
SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes automatic transfer switches rated 600 V and less.

1.2 SUBMITTALS
A. Product Data: Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.
C. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 2. Dimensioned Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based.
D. Field quality-control test reports.
E. Operation and maintenance data.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NEMA ICS 1.
C. Comply with NFPA 70.
D. Comply with NFPA 99.
E. Comply with NFPA 110.
F. Comply with UL 1008 unless requirements of these Specifications are stricter.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Contactor Transfer Switches:
 a. AC Data Systems, Inc.
 b. Caterpillar; Engine Div.
 c. Emerson; ASCO Power Technologies, LP.
 d. Generac Power Systems, Inc.
 e. GE Zenith Controls.
f. Kohler Power Systems; Generator Division.
g. Onan/Cummins Power Generation; Industrial Business Group.
h. Russelectric, Inc.
i. Spectrum Detroit Diesel.

2. Transfer Switches Using Molded-Case Switches or Circuit Breakers:
 a. AC Data Systems, Inc.
 c. GE Zenith Controls.
 d. Hubbell Industrial Controls, Inc.
 e. Lake Shore Electric Corporation.

2.2 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.

B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
 1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location.

C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.

D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.

E. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electric-motor-operated mechanism, mechanically and electrically interlocked in both directions.

F. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are not acceptable.
 2. Switch Action: Double throw; mechanically held in both directions.
 3. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.

G. Neutral Switching: Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles.

H. Neutral Terminal: Solid and fully rated, unless otherwise indicated.

I. Oversize Neutral: Ampacity and switch rating of neutral path through units indicated for oversize neutral shall be double the nominal rating of circuit in which switch is installed.

J. Battery Charger: For generator starting batteries.
 1. Float type rated 10 A.
 2. Ammeter to display charging current.
 3. Fused ac inputs and dc outputs.

K. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.3 AUTOMATIC TRANSFER SWITCHES

A. Comply with Level 1 equipment according to NFPA 110.

B. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated.
C. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval is adjustable from 1 to 30 seconds.

D. Transfer Switches Based on Molded-Case-Switch Components: Comply with NEMA AB 1, UL 489, and UL 869A.

E. In-Phase Monitor: Factory-wired, internal relay controls transfer so it occurs only when the two sources are synchronized in phase.

F. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated.

G. Programmed Neutral Switch Position: Switch operator has a programmed neutral position arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer.

H. Automatic Transfer-Switch Features:
 1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage is adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.
 4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 5. Test Switch: Simulate normal-source failure.
 6. Switch-Position Pilot Lights: Indicate source to which load is connected.
 a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
 9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.
 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
 11. Engine Shutdown Contacts: Instantaneous; shall initiate shutdown sequence at remote engine-generator controls after retransfer of load to normal source.
 12. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
 13. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 b. Push-button programming control with digital display of settings.
 c. Integral battery operation of time switch when normal control power is not available.

2.4 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

B. Floor-Mounting Switch: Anchor to floor by bolting.
 1. Concrete Bases: 4 inches high, reinforced, with chamfered edges. Extend base no more than 4 inches in all directions beyond the maximum dimensions of switch, unless otherwise indicated or unless required for seismic support. Construct concrete bases according to Division 26 Section "Hangers and Supports for Electrical Systems."

C. Identify components according to Division 26 Section "Identification for Electrical Systems."

D. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

3.2 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.
 2. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 a. Check for electrical continuity of circuits and for short circuits.
 b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 c. Verify that manual transfer warnings are properly placed.
 d. Perform manual transfer operation.
 5. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 c. Verify time-delay settings.
 d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 e. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles.
 f. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.
 a. Verify grounding connections and locations and ratings of sensors.

C. Coordinate tests with tests of generator and run them concurrently.
D. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.

E. Remove and replace malfunctioning units and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Division 01 Section "Demonstration and Training."

B. Coordinate this training with that for generator equipment.

END OF SECTION 263600
SECTION 264113 - LIGHTNING PROTECTION FOR STRUCTURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes lightning protection for structures.

B. Scope of Work: Furnish and install a complete lightning protection system for the Liberty High School Performing Arts Center addition, that extends to the existing perimeter lightning protection systems. Field verify connection points and existing conditions. System to fully cover the expanded building footprint perimeter.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For air terminals and mounting accessories.
 1. Layout of the lightning protection system, along with details of the components to be used in the installation.
 2. Include indications for use of raceway, data on how concealment requirements will be met, and calculations required by NFPA 780 for bonding of grounded and isolated metal bodies.

C. Field quality-control reports.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Certified by UL and LPI as a Master Installer/Designer, trained and approved for installation of units required for this Project.

B. System Certificate:
 1. UL Master Label.
 2. LPI System Certificate.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 780, "Definitions" Article.

PART 2 - PRODUCTS

2.1 LIGHTNING PROTECTION SYSTEM COMPONENTS

A. Comply with UL 96 and NFPA 780.

B. Roof-Mounted Air Terminals: NFPA 780, Class I, aluminum unless otherwise indicated.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. East Coast Lightning Equipment Inc.
 b. ERICO International Corporation.
 c. Harger.
 d. Heary Bros. Lightning Protection Co. Inc.
 e. Independent Protection Co.
 f. Preferred Lightning Protection.
 g. Robbins Lightning, Inc.
 h. Thompson Lightning Protection, Inc.
 2. Air Terminals More than 24 Inches Long: With brace attached to the terminal at not less than half the height of the terminal.

C. Main and Bonding Conductors: Aluminum.

D. Ground Loop Conductor: The same size and type as the main conductor except tinned.

E. Ground Rods: Copper-clad steel; 3/4 inch in diameter by 10 feet long.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lightning protection components and systems according to UL 96A and NFPA 780.

B. Conceal the following conductors:
 1. System conductors.
 2. Down conductors.
 3. Interior conductors.
 4. Conductors within normal view of exterior locations at grade within 200 feet of building.

C. Cable Connections: Use crimped or bolted connections for all conductor splices and connections between conductors and other components. Use exothermic-welded connections in underground portions of the system.

D. Cable Connections: Use exothermic-welded connections for all conductor splices and connections between conductors and other components.
 1. Exception: In single-ply membrane roofing, exothermic-welded connections may be used only below the roof level.

E. Air Terminals on Single-Ply Membrane Roofing: Comply with roofing membrane and adhesive manufacturer's written instructions.

F. Bond extremities of vertical metal bodies exceeding 60 feet in length to lightning protection components.

G. Ground Loop: Install ground-level, potential equalization conductor and extend around the perimeter of structure.
 1. Bury ground ring not less than 24 inches from building foundation.
 2. Bond ground terminals to the ground loop.
 3. Bond grounded building systems to the ground loop conductor within 12 feet of grade level.

H. Bond lightning protection components with intermediate-level interconnection loop conductors to grounded metal bodies of building at 60-foot intervals.

3.2 CORROSION PROTECTION

A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.

B. Use conductors with protective coatings where conditions cause deterioration or corrosion of conductors.

3.3 FIELD QUALITY CONTROL

A. Notify Architect at least 48 hours in advance of inspection before concealing lightning protection components.

B. UL Inspection: Meet requirements to obtain a UL Master Label for system.

C. LPI System Inspection: Meet requirements to obtain an LPI System Certificate.

END OF SECTION 264113
SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 SUBMITTALS

A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project, IES LM-79, and IES LM-80.
 a. Manufacturers’ Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

D. Product Certificates: For each type of luminaire.

E. Sample warranty.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.

1.6 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.7 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Recessed Fixtures: Comply with NEMA LE 4.

C. CRI of 80 (minimum). CCT of 4000 K unless otherwise indicated.

D. Rated lamp life of 50,000 (minimum) hours.

E. Lamps dimmable from 100 percent to 0 percent of maximum light output.

F. Internal driver.

2.2 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.
2.3 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.4 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Remote Mounting of Ballasts: Distance between the ballast and luminaire shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire.

C. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

D. Install lamps in each luminaire.

E. Coordinate layout and installation of luminaires and suspension system with other construction that penetrates ceilings or is supported by them.

F. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

G. Ceiling-Grid-Mounted Luminaire Supports: Use grid as a support element.
 1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each luminaire. Locate not more than 6 inches from luminaire corners.
 2. Support Clips: Fasten to luminaires and to ceiling grid members at or near each luminaire corner with clips that are UL listed for the application.
 3. Luminaires of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support luminaires independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
 4. Install at least one independent support rod or wire from structure to a tab on luminaire. Wire or rod shall have breaking strength of the luminaire weight at a safety factor of 3.
H. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

I. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

J. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

K. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

3.5 ADJUSTING

A. Occupancy Adjustments: Provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Some of this work may be required during hours of darkness.
 1. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119
SECTION 265219 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color Rendering Index.

C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.

D. Fixture: See "Luminaire" Paragraph.

E. Lumen: Measured output of lamp and luminaire, or both.

F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 SUBMITTALS

A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 1. Include data on features, accessories, and finishes.
 2. Include physical description of the unit and dimensions.
 3. Battery and charger for light units.
 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 a. Manufacturers’ Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Product Schedule:
 1. For emergency lighting units. Use same designations indicated on Drawings.
 2. For exit signs. Use same designations indicated on Drawings.

C. Product Certificates: For each type of luminaire.

D. Sample Warranty: For manufacturer's warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.
1.6 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.7 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.

D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for fluorescent luminaires.

F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.

G. Bulb Shape: Complying with ANSI C79.1.

2.2 EMERGENCY LUMINAIRES

A. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast.

1. Emergency Connection: Operate lamp(s) continuously at an output of 1100 (minimum) lumens upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast or driver.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

3. Test Push-Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.

a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.

b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.

6. Integral Self-Test (When Specified on Drawings): Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciacted by an integral audible alarm and a flashing red LED.

B. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.

1. Emergency Connection: Operate fluorescent or LED lamp(s) continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast or driver.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

5. Housing: NEMA 250, Type 1 enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the ballast, driver, or emergency power unit manufacturer, whichever is less.

6. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.

7. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

8. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

9. Integral Self-Test (When Specified on Drawings): Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciates by an integral audible alarm and a flashing red LED.

2.3 EMERGENCY LIGHTING UNITS

A. General Requirements for Emergency Lighting Units: Self-contained units.

B. Emergency Lighting Unit:
 1. Operating at nominal voltage of 120 V ac or 277 V ac.
 2. Wall or ceiling with universal junction box adaptor.
 3. UV stable thermoplastic housing.
 4. Two Halogen or LED lamp heads.
 5. Internal emergency power unit.

C. Remote Emergency Lighting Units:
 1. Operating at nominal voltage of 120 V ac, 277 V ac, 6 V dc, 9.6 V dc, 12 V dc, or 24 V dc.
 2. Wall or ceiling with universal junction box adaptor.
 3. Steel housing rated for wet locations.
 4. Two Halogen or LED lamp heads.
 5. External emergency power unit.

2.4 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:
 1. Operating at nominal voltage of 120 V ac or 277 V ac.
 2. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
 3. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.

2.5 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:
 1. Smooth operating, free of light leakage under operating conditions.
 2. Designed to permit relamping without use of tools.
 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
B. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

E. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.

F. Ceiling Grid Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
 3. Use approved devices and support components to connect luminaire to ceiling grid.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

END OF SECTION 265219
SECTION 265619 - LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Exterior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 SUBMITTALS

A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project, IES LM-79, and IES LM-80.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

D. Product Certificates: For each type of luminaire.

E. Sample warranty.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.

1.6 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.7 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Recessed Fixtures: Comply with NEMA LE 4.

C. CRI of 80 (minimum). CCT of 2700 K unless otherwise indicated.

D. LEDs shall have a minimum L70 at 50,000 hours based on TM-21 Addendum-A lifetime report data.

E. Internal driver or as listed in fixture schedule.

F. Batteries in fixtures designated for emergency lighting must be compatible with the emergency unit used with minimum leakage.

2.2 DIMMING REQUIREMENTS

A. LEDs dimmable from 100 percent to 5 percent of maximum light output, unless noted otherwise in the light fixture schedule.

B. All LED dimming shall be smooth and free of flickering. Contractor shall coordinate between dimmer manufacturers, light fixture manufacturers, driver manufacturers, and lamp manufacturers as required in order to install a completely flicker free dimming system.

2.3 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit LED or driver access without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during maintenance and when secured in operating position.
C. Diffusers and Globes:
 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

E. Housings:
 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
 2. Provide filter/breather for enclosed luminaires.

F. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.4 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Remote Mounting of drivers: Distance between the driver and luminaire shall not exceed that recommended by the fixture manufacturer. Verify, with manufacturer, maximum distance between driver and luminaire.

C. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

D. Coordinate layout and installation of luminaires and suspension system with other construction that penetrates ceilings or is supported by them.

E. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
F. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

G. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.

I. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

3.5 ADJUSTING

A. Occupancy Adjustments: Provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Some of this work may be required during hours of darkness.
 1. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265619
SECTION 270000 - DISTRICT COMMUNICATIONS SPECIFICATIONS

PART 1 - GENERAL

1.1 SCOPE OF SERVICES

A. Fiberoptic Cabling: Fiber will be installed connecting the Main Distribution Frame (MDF) fiber panel at the Facility Center to the MDF of the Distribution Center with Single Mode Fiber Cabling: Fiber will be installed in provided 2” conduit with 12-filament single Loose Tube Single Jacket All Dielectric mode fiber. Superior Essex part number 110122T01. When pulling fiber and tracer wire through conduit, a pull string is to be included as well. Fiber to be terminated utilizing LC fiber bulkheads (OR-OFP-LCD12LC) with singlemode connectors (OR-205KNF9SA-09). A breakout kit for the “loose tube” fiber is also needed (OR-61500858). Tracer wire is to be included in conduit. Tracer wire is to be 12 gauge. At the Distribution Center, fiber to be routed to enclosure (Legrand Part# EQ01U-CHC). The Facility Center side currently has a fiber enclosure but will need the bulkheads and connectors.

B. Copper Cabling: CMP 66-240-xB. Cat 6 Superior Essex Datagain 6+, Plenum rated blue part number: 66-240-2B where noted. Open areas noted on prints would be CMP 66-240-4B (white).

D. Cable Management
1. No electrical tape or zip ties for bundling cables or attaching to j-hooks.
2. Black plenum rated Velcro strips only for bundling cable. White plenum rated Velcro strips for the locations with white cabling.
3. On the 48-port patch panels, both cable management bars are to be installed and utilized.
4. On all cable terminations, stuffer caps are required at the field and closet locations.
5. When dressing cables on the back of the patch panels, half of the cables will run down the left side and the other half down the right side of the rack.
6. New cables that are damaged during installation, such as a sliced or cut, even if they pass testing, must be replaced and tested and the old cabling removed.
7. Damage to other cabling or systems not part of this project must be remedied by the vendor utilizing authorized vendors and/or cabling approved by the District at no cost to the District.
8. During installation of new cabling, ceiling tiles along artery routes are to be left open until inspected by District Technology staff. Damaged tile and/or grid will need to be replaced by the vendor and will need to match existing tile and grid. Vendors will be responsible for closing all ceiling tiles after District inspections.
9. Old Ethernet, fiber and enclosures, where applicable, not used will need to be removed and discarded by the vendor. This would also include any empty innerducts.
10. The District can provide ceiling tiles for any data closets that would need to be recut by the vendor to accommodate cabling pathways.
11. Any penetration that is not drywall material will need a sleeve and pull string (for future runs) installed per applicable codes.
12. Service loops of approximately 10-15’ should be installed above the ceiling at each endpoint location as well as at each MDF/IDF rack location.
13. For any endpoint locations and/or conduit pathways that are vacated, add a pull string from wall location to above ceiling/starting point to ending point and cover with a correctly sized faceplate/metal cover.
14. All data, voice, access control, etc. cables shall be within raceway, J-hooks or other designated cable delivery system. Successful bidder must provide all hardware to run and secure Ethernet, fiber, etc. as specified by applicable codes and ordinances.
15. Cable trunks should be secured above HVAC duct where applicable unless otherwise approved by the District. All cable should be neatly run within the cable trunk until branching off to an endpoint.

E. Clarity Rear-Load High Density Jack Panel Kits
1. 48 Port Panel: 48-port, panel jack panel kit, flat, unloaded, 1 RU, Part: OR-PHDHU48. All slots must be populated.
2. Rear-load jacks part OR-HDJ6-00 Black (Cat 6) and part OR-HDJ6A-36 (Cat 6a), Blue.
3. All rows in each panel must be filled with the same type of panel jack. No mixing of Cat 6 and 6a jacks in a row. In a 48-port panel there can be a row of 24 Cat 6 and a row of 24 Cat 6a panel jacks. All ports must be terminated from left to right with no skipping of ports on the panel.
F. Above ceiling: TracJack Surface Mount Box. Part: OR-404HDJ2 (Fog White) for locations with two or less cables. For locations with three or four cables, use OR-404HDJ4 (Fog White). For locations with five or six cables, use OR-404HDJ6 (Fog White). TracJacks OR-HDJ6 Fog White (Cat 6) and part OR-HDJ6A-36 Blue (Cat 6a).

G. Wall installation where applicable:
1. Wall mount box single: Part: OR-403HDJ16 Fog white
2. Wall mount box dual: Part: OR-403HDJ212 Fog white
3. Extra deep wall mount single: Part: Wiremold NM2044FW (for HDMI locations)
4. Extra deep wall mount double: Part: Wiremold NM2044-2FW (for HDMI locations)
5. Wall mount box jack: Part: OR-HDJ6 Fog white
6. 6-port Faceplate: 403HDJ16 (Fog White) for single gang boxes. NOTE: All vacant slots must be filled with blanks
7. 4-port Faceplate: 419HDJ4-88 (Fog White) for dual gang boxes with half electrical where applicable.
8. 12-port Faceplate: 403HDJ212 (Fog White) for dual-gang boxes. NOTE: All vacant slots must be filled with blanks
9. Blank module, OR-HDJ6 (Fog White). All vacant slots must be filled with blanks
10. Wall mount box AV jack where applicable: OR-HDJ5E-68 (Dark Gray)
11. Legrand-Wiremold PN10L10FW (Fog White-8 ft section)
12. Legrand-Wiremold PN10F86FW (Fog White-Ceiling Connector)
13. NOTE: All field Ethernet installations must be installed in the upper most top left location available and go from left to right and then down to the next available row, etc.

H. Equipment Racks:
1. MDF: The distribution frame termination equipment and any electronics to be mounted in one new vendor provided 7’ standard free standing standing 19” EIA/TIA rack with vertical swivel managers. Hubbell Part number CS1976H. Vendor will provide six (6) Horizontal managements to be installed above and below each patch panel and customer provided switches. (Part # Hubbell HM24C, Cable MGMT Duct Panel 19”W x 3.5” H x 3.5” D w/ Cover, steel Black). Ladder from rack(s) to walls and along walls in data closets are to also be included where applicable (with mounting hardware). Wall Angle Support Kit p/n 11421-X12, 3” Channel Rack to Runway p/n 10595-X12 and 12” Universal Cable Runway p/n 10250-X12) as well as a rack mounted power strip, Tripp-Lite PDU1215. See ladder section for other specific part numbers.

I. Ladder rack to be verified-installed in all existing and/or new racks in all closets. All ladder rack should utilize whatever parts needed for securing to wall and rack.
1. Straight Sections: 6’ part # HLS0612B, 10’ part # HLS1012B
2. 90º Turns: Inside Radius 12” part # HLI1290B, Outside Radius 12” part # HLO1290B and Flat Turn Radius 12” part # HLF1290B.
3. Splice Kits: Butt splice part #: HLBSK, Swivel part # HLSSK, T-junction part # HLTK.
4. Wall Angle Supports: 6-12” part number HLX0612
5. Vertical wall bracket (2 clips) part number HLWVBK
6. Protective end caps, 2-pack, black part number HLECPK2
7. Wall/Rack mounting kit:Includes (1) HLMPK19, (1) HLX0612,
8. (1) 40”L x 12”W ladder section, part number HLWRK
9. J-Bolt Kit 2-pack, galvanized, part number HLJB
10. Foot kit: 2-pack with splices, black, part number HLRF

J. Grounding: For data racks, provide necessary grounding and bonding within telecommunications room to comply with TIA-607 B standards. A grounding bar also needs to be installed near the floor close to the rack with Hubbell part number HBBB14210A. The grounding bar will be used at the main distribution point and not as an auxiliary point. Coordinate with the owner for location. Ladder rack, cable trays and free-standing rack(s), etc. must all be grounded as complete pieces. Connections must be clean and contain no spurs or sharp exposed wire. District will provide building ground to bus bar. None of the racks are currently grounded.

K. Labeling: All locations (fiber, Ethernet, etc.) are to be labeled in typewritten format or owner approved equivalent. Plastic protective covers that come with cable boxes are required. Hand-written location labels will not be permitted. Verify closet designations with the owner.
1. Field Termination: All location labels are to be installed behind the factory transparent plastic protector clearly indicating the closet, panel and port number. For example, in IDF L, jack locations are to be labeled by closet, panel and then port number. For example, L-2-01 would represent Closet L, Panel 2, Port 01. Multiple ports on a field termination endpoint would be labeled as “L-2-01 L-2-02”. Label numbers should be above the termination box ports and endpoint terminations should always start at the top of the endpoint termination box. Numbers should be sequential in order where possible. For example, on a two-port box, labels would be at
the top. In a three-port example two at the top and one at the bottom. In a four-port box two at the top and two at the bottom and in a six-port box three at the top and three at the bottom. All labeling starts at the top left of the box.

2. Closet Termination: The panels do not require port labels to match the field termination end points. Each panel will only need one identifying label in the upper left-hand corner. Examples include L-1, L-2, etc. Verify with owner for clarification.

L. Ensure all cabling meets specifications utilizing a contractor provided certified tester following TIA-526-14-B guidelines. Provide OTLS test results for all Fiber Optic cabling delivered in written and magnetic media (USB drive or DVD). This includes testing and providing certification results for any cables that need to be pulled again after the initial testing results have been delivered to the District.

M. Any item of equipment or material not specifically addressed on the drawings or in this document and required to provide a complete and functional installation shall be provided in a level of quality consistent with other specified items at no additional cost to the owner.

N. Codes: Unless otherwise documented, the successful bidder must provide all hardware to run and secure all cabling and equipment racks as specified by applicable codes and ordinances. References include but are not limited to the following:
2. TIA/EIA-568-C: Commercial Building Telecommunications Wiring Standard
3. EIA/TIA-569B: Commercial Building Standard for Telecommunications Pathways and spaces
4. TIA/EIA-606: Administration Standard for the Telecommunications Infrastructure of Commercial Buildings
5. National Electrical Code Article 770 “Optical Fiber Cables” and Article 800 “Communications Circuits”
6. Local Electrical Code
8. OSHA 29 CFR 1926/1910 Safety and Health Standards
9. Underwriters Laboratories, Inc. (UL) Listings and Approvals

O. Penetrations of walls, floors and ceilings:
1. The Contractor shall make no penetration of floors, walls or ceiling without the prior consent of the owner.
2. Where penetrations through acoustical walls or other walls for cableways are needed the Contractor will seal such penetrations in compliance with applicable code requirements.
3. Where penetrations through fire-rated walls for cableways are needed the Contractor will seal such penetrations as required by code.

P. General Installation
1. The contractor shall furnish all required installation tools to facilitate cable pulling without damage to fiber jacket.
2. All routing shall be kept clear of other trades work and supported using the method(s) mentioned in this section.
3. During pulling operation an adequate number of workers shall be present to allow fiber observation at all points of raceway entry and exit, as well as to feed fiber and operate pulling machinery.
4. Pull cables in accordance with cable manufacturer’s recommendations and ANSI/IEEE C2 standards.
5. Pull all cabling by hand unless installation conditions require mechanical assistance.
6. Where mechanical assistance is used, ensure that maximum tensile load for fiber is not exceeded. This may be in the form of continuous monitoring of pulling tension, use of "break-away" or other approved method.
7. Any fiber shall be installed splice-free.
8. Avoid abrasion and other damage to cabling during installation.
9. If pulling lubricant is used it shall be non-injurious to cabling jacket and other materials used and not harden or become adhesive with age.
10. Minimum bend radii, as specified by the manufacturer, must be adhered to for pulling and final installation.
11. Any cabling bent or kinked to radius less than recommended dimension are not allowed and shall be replaced at no expense to owner.
12. Repair damage to interior spaces caused by installation of cable, raceway or other hardware.
13. Repairs must match preexisting color and finish of walls, floors and ceilings.

Q. Documentation: An Excel spreadsheet will be prepared by vendor and submitted to the District in electronic format with at least the following information. Obtain official spreadsheet from customer.
1. Building name
2. Data closet number/identifier
3. Panel number
4. Port number
5. Terminated in wall, floor or ceiling

6. Room/Location Description

R. Door Controls Red Icon: Door control element wire, Windy City Wire part number 4461030 (or equivalent but must have a yellow jacket), to be ran from designated doors to the designated MDF/IDF. At each door location, there will be a 10-foot service loop starting at the top of the door frame. At the designated MDF/IDF, cable must be able to touch the ground plus four feet. All terminations will be completed by District staff or contractor.

S. Specialized Drops: If the map indicates something like HVAC, Door Controls, etc. next to the data drop symbol, the cable must be terminated inside of the enclosure. Note that the enclosure might not be installed at the time the cable is run. The cables will still be terminated in a biscuit and labeled accordingly. Coordinate with Network Administrator or Technology Director.

T. Specialized Systems: Additional cable will need to be pulled for intercom and intrusion detection systems. Cabling for intercom locations will be 2-conductor 18-gauge unshielded plenum rated cable (yellow in color). Intrusion detection will be 18 gauge 4-conductor unshielded plenum rated cable (gray in color). All locations and routes will be identified on the maps and handed out at the walk through. Verify where cable needs to be landed and labeled for each specialized system. For example, intercom cabling is usually routed to the bottom of the equipment rack and labeled in the data closets.

U. AV Requirements:
 1. At conference room locations, data will be installed at a specified location for District provided flat panel TV. There will be a single gang box down low and connected to the upper data box behind the TV. Vendor must connect an HDMI cable from upper location to lower location with HDJHDMI couplers. Blanks to be installed for any unused slots.

1.2 VENDOR QUALIFICATIONS

A. The contractor must employ and utilize a BICSI RCDD in good standing at all times during the entire installation of this system.

B. The contractor must have a minimum of five (5) years’ experience on similar cabling systems.

C. Vendor must agree to e-rate guidelines, have a valid SPIN number AND have a SPAC form on file that is not outdated.

D. The Vendor must also have the necessary certifications to provide the nCompass Warranty offered between Legrand Ortronics and Superior Essex. The network cabling infrastructure must be installed by Supplier approved designers and Certified Contractors at the Certified Installer Plus-Enterprise Solutions Partner (CIP-ESP) tier or Certified Installer Plus (CIP) tier in accordance with manufacturer’s installation instructions and specifications. Copies of certifications must be attached to the Vendor’s response for evaluation by The Customer.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 270000
SECTION 270500 - COMMON WORK RESULTS FOR COMMUNICATIONS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves for pathways and cables.
 2. Sleeve seals.
 4. Common communications installation requirements.

1.2 SUBMITTALS

A. Product Data: For sleeve seals.

PART 2 - PRODUCTS

2.1 SLEEVES FOR PATHWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of pathway or cable.

 3. Pressure Plates: Plastic. Include two for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR COMMUNICATIONS INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both communications equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Communications penetrations occur when pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and pathway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pathway and cable penetrations. Install sleeves and seal pathway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for communications installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 270500
SECTION 270526 - GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Grounding conductors.
 2. Grounding connectors.
 3. Grounding busbars.
 4. Grounding rods.
 5. Grounding labeling.

1.3 DEFINITIONS

A. BCT: Bonding conductor for telecommunications.

B. EMT: Electrical metallic tubing.

C. TGB: Telecommunications grounding busbar.

D. TMGB: Telecommunications main grounding busbar.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

1.5 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:
 1. Ground rods.
 2. Ground and roof rings.
 3. BCT, TMGB, TGBs, and routing of their bonding conductors.

B. Qualification Data: For Installer, installation supervisor, and field inspector.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Result of the ground-resistance test, measured at the point of BCT connection.
 b. Result of the bonding-resistance test at each TGB and its nearest grounding electrode.
1.7 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Installation Supervision: Installation shall be under the direct supervision of ITS Technician, who shall be present at all times when Work of this Section is performed at Project site.
 2. Field Inspector: Currently registered by BICSI as a registered communications distribution designer to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 SYSTEM COMPONENTS

A. Comply with J-STD-607-A.

2.2 CONDUCTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Harger Lightning & Grounding.
 2. Panduit Corp.
 3. TE Connectivity Ltd.

B. Comply with UL 486A-486B.

C. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
 2. Cable Tray Equipment Grounding Wire: No. 6 AWG.
 3. <Double click to insert sustainable design text for lead content.>

D. Cable Tray Grounding Jumper:
 1. Not smaller than No. 10 AWG and not longer than 12 inches. If jumper is a wire, it shall have a crimped grounding lug with one hole and standard barrel for one crimp. If jumper is a flexible braid, it shall have a one- or two-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.

E. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmils, 14 strands of No. 17 AWG conductor, and 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with two-hole copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.3 CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Burndy; Part of Hubbell Electrical Systems.
 2. Chatsworth Products, Inc.
 3. Harger Lightning & Grounding.
 4. Panduit Corp.
 5. TE Connectivity Ltd.

B. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.

C. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.
1. Electroplated tinned copper, C and H shaped.

D. Signal Reference Grid Connectors: Combination of compression wire connectors, access floor grounding clamps, bronze U-bolt grounding clamps, and copper split-bolt connectors, designed for the purpose.

E. Busbar Connectors: Cast silicon bronze, solderless compression or exothermic-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch centers for a two-bolt connection to the busbar.

F. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 GROUNDING BUSBARS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Chatsworth Products, Inc.
 2. Harger Lightning & Grounding.
 3. Panduit Corp.

B. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, ¼ inch thick by 4 inches wide by 29 inches long. The busbar shall be NRTL listed for use as TMGB and shall comply with J-STD-607-A.
 1. Predrilling shall be with holes for use with lugs specified in this Section.
 2. Mounting Hardware: Stand-off brackets that provide a 4-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

2.5 GROUND RODS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Harger Lightning & Grounding.
 2. TE Connectivity Ltd.

B. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet in diameter.

2.6 LABELING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. HellermannTyton.
 3. Panduit Corp.

B. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.

B. Inspect the test results of the ac grounding system measured at the point of BCT connection.
C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.

B. Comply with NECA 1.

C. Comply with J-STD-607-A.

3.3 APPLICATION

A. Conductor: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
 1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 3/0 AWG.
 2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 3/0 AWG.

B. Underground Grounding Conductor: Install bare tinned-copper conductor, No. 2 AWG minimum.

C. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Termination: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

D. Conductor Support:
 1. Secure grounding and bonding conductors at intervals of not less than 36 inches.

E. Grounding and Bonding Conductors:
 1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
 2. Install without splices.
 3. Support at not more than 36-inch intervals.
 4. Install grounding and bonding conductors in 3/4-inch PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.
 a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with requirements in Section 270528 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

3.4 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than No. 3/0 AWG.

3.5 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches minimum from wall, 12 inches above finished floor unless otherwise indicated.
B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

3.6 CONNECTIONS

A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.

B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.

C. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:
 1. Use crimping tool and the die specific to the connector.
 2. Pretwist the conductor.
 3. Apply an antioxidant compound to all bolted and compression connections.

D. Primary Protector: Bond to the TMGB with insulated bonding conductor.

E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than No. 3/0 AWG unless otherwise indicated.

F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Bond the equipment grounding busbar to the TGB No. 6 AWG bonding conductors.

G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.

H. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA/EIA-568-B.1 and TIA/EIA-568-B.2 when grounding screened, balanced, twisted-pair cables.

I. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.

J. Access Floors: Bond all metal parts of access floors to the TGB.

K. Equipment Room Signal Reference Grid: Provide a low-impedance path between telecommunications cabinets, equipment racks, and the reference grid, using No. 6 AWG bonding conductors.
 1. Install the conductors in grid pattern on 4-foot centers, allowing bonding of one pedestal from each access floor tile.
 2. Bond the TGB of the equipment room to the reference grid at two or more locations.
 3. Bond all conduits and piping entering the equipment room to the TGB at the perimeter of the room.

L. Towers and Antennas:
 1. Ground Ring: Buried at least 30 inches below grade and at least 24 inches from the base of the tower or mounting.
 2. Bond each tower base and metallic frame of a dish to the ground ring, buried at least 18 inches below grade.
 3. Bond the ground ring and antenna grounds to the equipment room TMGB or TGB, buried at least 30 inches below grade.
 4. Bond metallic fences within 6 feet of towers and antennas to the ground ring, buried at least 18 inches below grade.
 5. Special Requirements for Roof-Mounted Towers:
 a. Roof Ring: Meet requirements for the ground ring except the conductors shall comply with requirements in Section 264113 "Lightning Protection for Structures."
 b. Bond tower base footings steel, the TGB in the equipment room, and antenna support guys to the roof ring.
c. Connect roof ring to the perimeter conductors of the lightning protection system.

6. Waveguides and Coaxial Cable:
 a. Bond cable shields at the point of entry into the building to the TGB and to the cable entrance plate, using No. 2 AWG bonding conductors.
 b. Bond coaxial cable surge arrester to the ground or roof ring using bonding conductor size recommended by surge-arrester manufacturer.

3.7 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

B. Comply with IEEE C2 grounding requirements.

C. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches extends above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

D. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect grounding conductors to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

3.8 IDENTIFICATION

A. Labels shall be preprinted or computer-printed type.
 1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.
 2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.
 3. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer’s written instructions.
 2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.
 a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.
 3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.
 a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB and in each TGB. Maximum acceptable ac current level is 1 A.

C. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.

D. Grounding system will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

END OF SECTION 270526
SECTION 270536 - CABLE TRAYS FOR COMMUNICATION SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes aluminum cable trays and accessories.

1.2 SUBMITTALS

A. Product Data: Include data indicating dimensions and finishes for each type of cable tray indicated.

B. Shop Drawings: Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.

C. Field quality-control reports.

D. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Cooper B-Line, Inc.
 4. GS Metals Corp.; GLOBETRAY Products.
 5. MONO-SYSTEMS, Inc.
 6. MPHusky.
 7. PW Industries.
 8. Pre-approved equal.

2.2 MATERIALS AND FINISHES

A. Cable Trays, Fittings, and Accessories: Aluminum, complying with NEMA VE 1, Aluminum Association's Alloy 6063-T6 for rails, rungs, and cable trays, and Alloy 5052-H32 or Alloy 6061-T6 for fabricated parts; with Type 316 stainless-steel splice-plate fasteners, bolts, and screws.
 1. Sizes and Configurations: Center hung divided aluminum cable tray 12" wide x 4" deep with 6" rung. Provide support for load of 100lb per linear foot.

2.3 CABLE TRAY ACCESSORIES

A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.

B. Barrier Strips: Same materials and finishes as cable tray.

C. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cable tray with minimum 12” clear above, 4” clear below, and 2 feet clear on sides. Coordinate installation of cable tray with all other trades and provide coordination drawings indicating required clearances are maintained with respect to ductwork, piping, sprinklers, conduit, etc.

B. Comply with recommendations in NEMA VE 2. Install as a complete system, including all necessary fasteners, hold-down clips, splice-plate support systems, barrier strips, hinged horizontal and vertical splice plates, elbows, reducers, tees, and crosses.

C. Remove burrs and sharp edges from cable trays.

D. Fasten cable tray supports to building structure.
 1. Place supports so that spans do not exceed maximum spans on schedules.
 2. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.
 3. Support bus assembly to prevent twisting from eccentric loading.
 4. Manufacture center-hung support, designed for 60 percent versus 40 percent eccentric loading condition, with a safety factor of 3.
 5. Locate and install supports according to NEMA FG 1.

E. Make connections to equipment with flanged fittings fastened to cable tray and to equipment. Support cable tray independent of fittings. Do not carry weight of cable tray on equipment enclosure.

F. Install expansion connectors where cable tray crosses building expansion joint and in cable tray runs that exceed dimensions recommended in NEMA FG 1. Space connectors and set gaps according to applicable standard.

G. Make changes in direction and elevation using standard fittings.

H. Make cable tray connections using standard fittings.

I. Seal penetrations through fire and smoke barriers according to Division 07 Section "Penetration Firestopping."

J. Sleeves for Future Cables: Install capped sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.

K. Workspace: Install cable trays with enough space to permit access for installing cables.

L. Install barriers to separate cables of different systems, such as power, communications, and data processing; or of different insulation levels, such as 600, 5000, and 15 000 V.

M. After installation of cable trays is completed, install warning signs in visible locations on or near cable trays.

N. Install cables only when cable tray installation has been completed and inspected.

O. Fasten cables on horizontal runs with cable clamps or cable ties as recommended by NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket. Install cable ties with a tool that includes an automatic pressure-limiting device.

P. On vertical runs, fasten cables to tray every 18 inches. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.

Q. Install covers after installation of cable is completed.

R. Ground cable trays according to manufacturer's written instructions.

S. Install an insulated equipment grounding conductor with cable tray, in addition to those required by NFPA 70.
3.2 FIELD QUALITY CONTROL

A. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements. Perform the following field quality-control survey:

1. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable tray, vibration, and thermal expansion and contraction conditions, which may cause or have caused damage.
2. Verify that the number, size, and voltage of cables in cable tray do not exceed that permitted by NFPA 70. Verify that communication or data-processing circuits are separated from power circuits by barriers.
3. Verify that there is no intrusion of such items as pipe, hangers, or other equipment that could damage cables.
4. Remove deposits of dust, industrial process materials, trash of any description, and any blockage of tray ventilation.
5. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.
6. Check for missing or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.
7. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable tray.

END OF SECTION 270536
SECTION 275116 - PUBLIC ADDRESS SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Loudspeakers.
 2. Conductors and cables.
 3. Raceways.

B. Scope of Work: New digital type intercom system for Liberty Distribution Center. Installation includes a new head end in IT room. The scope includes (5) different zones:
 1. Zone 1
 a. Location: interior office spaces including restrooms, boh, offices, vestibules, breakroom
 b. Operation: (1) zone input for music, (1) i/o input for doorbell linkage
 2. Zone 2
 a. Location: copy center
 b. Operation: (1) zone input for music
 3. Zone 3
 a. Location: dry food storage, cooler, and freezer
 b. Operation: (1) zone output circuit, no talkback
 4. Zone 4:
 a. Location: all remaining warehouse spaces
 b. Operation: (1) zone input for music, (1) i/o input for doorbell linkage, (1) zone output circuit
 5. Zone 5
 a. Location: exterior
 b. Operation: (1) zone output circuit

1.2 SUBMITTALS

A. Shop Drawings: For all equipment.

B. Product Data: For each type of product indicated.

C. Field quality-control reports.

D. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements.

2.2 GENERAL EQUIPMENT AND MATERIAL REQUIREMENTS

A. Compatibility of Components: Coordinate component features to form an integrated system. Match components and interconnections for optimum performance of specified functions.

2.3 LOUDSPEAKERS

A. Cone-Type Loudspeakers:
1. Minimum Axial Sensitivity: 91 dB at one meter, with 1-W input.
2. Frequency Response: Within plus or minus 3 dB from 50 to 15,000 Hz.
3. Size: 8 inches with 1-inch voice coil and minimum 5-oz. ceramic magnet.
5. Rated Output Level: 10 W.
6. Matching Transformer: Full-power rated with four taps. Maximum insertion loss of 0.5 dB.
7. Surface-Mounting Units: Ceiling, wall, or pendant mounting, as indicated, in steel back boxes, acoustically dampened. Front face of at least 0.0478-inch steel and whole assembly rust proofed and shop primed for field painting.

B. Horn-Type Loudspeakers:
1. Type: Single-horn units, double-reentrant design, with minimum full-range power rating of 15 W.
2. Matching Transformer: Full-power rated with four standard taps. Maximum insertion loss of 0.5 dB.
3. Frequency Response: Within plus or minus 3 dB from 250 to 12,000 Hz.
4. Dispersion Angle: 130 by 110 degrees.
6. Units in Hazardous (Classified) Locations: Listed and labeled for environment in which they are located.

2.4 CONDUCTORS AND CABLES

A. Provide per specification section 27 00 00.

2.5 RACEWAYS

A. Conduit and Boxes: Comply with Division 26 Section "Raceway and Boxes for Electrical Systems."
1. Outlet boxes shall be not less than 2 inches wide, 3 inches high, and 2-1/2 inches deep.

PART 3 - EXECUTION

3.1 WIRING METHODS

1. Install plenum cable in environmental air spaces, including plenum ceilings.
2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

3.2 INSTALLATION OF RACEWAYS

A. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.

B. Install manufactured conduit sweeps and long-radius elbows whenever possible.

3.3 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Cable Installation Requirements:
1. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
2. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
3. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
5. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

6. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.

C. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 2. Suspend speaker cable not in a wireway or pathway a minimum of 8 inches above ceiling by cable supports not more than 60 inches apart.
 3. Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.

3.4 INSTALLATION

A. Match input and output impedances and signal levels at signal interfaces. Provide matching networks where required.

B. Identification of Conductors and Cables: Color-code conductors and apply wire and cable marking tape to designate wires and cables so they identify media in coordination with system wiring diagrams.

C. Wall-Mounted Outlets: Flush mounted.

D. Conductor Sizing: Unless otherwise indicated, size speaker circuit conductors from racks to loudspeaker outlets not smaller than No. 18 AWG and conductors from microphone receptacles to amplifiers not smaller than No. 22 AWG.

E. Speaker-Line Matching Transformer Connections: Make initial connections using tap settings indicated on Drawings.

F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Inspection: Verify that units and controls are properly labeled and interconnecting wires and terminals are identified. Prepare a list of final tap settings of paging speaker-line matching transformers.

END OF SECTION 275116
SECTION 280500 - COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves for raceways and cables.
 2. Sleeve seals.

1.2 SUBMITTALS

A. Product Data: For sleeve seals.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRONIC SAFETY AND SECURITY PENETRATIONS

A. Electronic safety and security penetrations occur when raceways, pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry

 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants”.

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping.”

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 280500
SECTION 280513 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Low-voltage control cabling.
 2. Control-circuit conductors.
 3. Fire alarm wire and cable.
 4. Identification products.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. For coaxial cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements.

C. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.

D. Source quality-control reports.

E. Field quality-control reports.

F. Maintenance data.

1.3 QUALITY ASSURANCE

A. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PATHWAYS

A. Support of Open Cabling: NRTL labeled for support of cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 2. Lacing bars, spools, J-hooks, and D-rings.
 3. Straps and other devices.

B. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems."
 1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.

2.2 LOW-VOLTAGE CONTROL CABLE

A. Paired Lock Cable: NFPA 70, Type CMG.
 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 2. PVC insulation.
 3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with UL 1581.

B. Plenum-Type, Paired Lock Cable: NFPA 70, Type CMP.
1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with NFPA 262.

C. Paired Lock Cable: NFPA 70, Type CMG.
1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with NFPA 262.

2.3 CONTROL-CIRCUIT CONDUCTORS

A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.

B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.

C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.4 FIRE ALARM WIRE AND CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Comtran Corp.
2. Draka USA.
3. Genesis Cable Products; Honeywell International, Inc.
4. Rockbestos-Suprenant Cable Corporation.
5. West Penn Wire/CDT; a division of Cable Design Technologies.

B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

C. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.

D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
1. Low-Voltage Circuits: No. 16 AWG, minimum.
2. Line-Voltage Circuits: No. 12 AWG, minimum.
3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.5 IDENTIFICATION PRODUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Brady Corporation
2. HellermannTyton
3. Kroy LLC.
4. Panduit Corp.

B. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

C. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

2.6 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.

C. Cable will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 INSTALLATION OF PATHWAYS

A. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A-7.

B. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

C. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems." for installation of conduits and wireways.

D. Install manufactured conduit sweeps and long-radius elbows whenever possible.

E. Pathway Installation in Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard when entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

F. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly, and form smooth gap-free corners and joints.

3.2 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 1. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets or terminals.
 2. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, and terminals.
 3. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
 4. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 5. Pulling Cable: Do not exceed manufacturer's instructions as to allowable pulling tension. Monitor cable pull tensions.

C. Open-Cable Installation:
1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

D. Installation of Cable Routed Exposed under Raised Floors:
 1. Install plenum-rated cable only.
 2. Install cabling after the flooring system has been installed in raised floor areas.

3.3 FIRE ALARM WIRING INSTALLATION

A. Comply with NECA 1 and NFPA 72.

B. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceway and Boxes for Electrical Systems."
 1. Install plenum cable in environmental air spaces, including plenum ceilings.

C. Wiring Method:
 1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 2. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is permitted.
 3. Signaling Line Circuits: Power-limited fire alarm cables may be installed in the same cable or raceway as signaling line circuits.

D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.

F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.

H. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.4 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.5 FIRESTOPPING

A. Comply with requirements in Division 07 Section "Penetration Firestopping."
3.6 GROUNDING
A. For low-voltage wiring and cabling, comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems."

3.7 FIELD QUALITY CONTROL
A. Tests and Inspections:
 1. Visually inspect cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding.
 2. Visually inspect cable placement, cable termination, grounding, and bonding.

B. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

C. Prepare test and inspection reports.

END OF SECTION 280513
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Fire-alarm control unit.
3. System smoke detectors.
6. Device guards.
7. Magnetic door holders.
10. System printer.

B. Related Requirements:
1. Section 280513 "Conductors and Cables for Electronic Safety and Security" for cables and conductors for fire-alarm systems.

C. Scope of work: Provide a new horn strobe fire alarm system for the Liberty Distribution Center.

1.3 DEFINITIONS

A. EMT: Electrical Metallic Tubing.

B. FACP: Fire Alarm Control Panel.

C. HLI: High Level Interface.

E. PC: Personal computer.

F. VESDA: Very Early Smoke-Detection Apparatus.

G. Pathway: Any circuit, conductor, optic fiber, radio carrier, or other means connecting two or more locations.

1.4 SUBMITTALS

A. Product Data: For each type of product, including furnished options and accessories.
 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 2. Include rated capacities, operating characteristics, and electrical characteristics.

B. Shop Drawings: For fire-alarm system.
 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 2. Include plans, elevations, sections, details, and attachments to other work.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 4. Detail assembly and support requirements.
 5. Include voltage drop calculations for notification-appliance circuits.
6. Include battery-size calculations.
7. Include input/output matrix.
8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
9. Include performance parameters and installation details for each detector.
10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
11. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal Requirements:
1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified, fire-alarm technician; Level III minimum.
 c. Licensed or certified by authorities having jurisdiction.

D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
3. Indicate audible appliances required to produce square wave signal per NFPA 72.

E. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 d. Riser diagram.
 e. Device addresses.
 f. Record copy of site-specific software.
 g. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.
 h. Manufacturer's required maintenance related to system warranty requirements.
 i. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:
1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
2. Smoke Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than one unit of each type.
3. Keys and Tools: One extra set for access to locked or tamperproofed components.
4. Audible and Visual Notification Appliances: One of each type installed.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.
C. NFPA Certification: Obtain certification according to NFPA 72.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Noncoded, UL-certified, non-proprietary addressable system, with multiplexed signal transmission and voice/strobe evacuation.
B. Automatic sensitivity control of certain smoke detectors.
C. All components provided shall be listed for use with the selected system.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices:
2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.
5. Carbon monoxide detectors.
6. Automatic sprinkler system water flow.

B. Fire-alarm signal shall initiate the following actions:
1. Continuously operate alarm notification appliances, including voice evacuation notices.
2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
3. Unlock electric door locks in designated egress paths.
4. Release fire and smoke doors held open by magnetic door holders.
5. Activate voice/alarm communication system.
6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
7. Close smoke dampers in air ducts of designated air-conditioning duct systems.
8. Recall elevators to primary or alternate recall floors.
9. Activate elevator power shunt trip.
10. Activate emergency lighting control.
11. Record events in the system memory.
12. Record events by the system printer.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:
1. Valve supervisory switch.
2. Elevator shunt-trip supervision.
3. Independent fire-detection and -suppression systems.
4. User disabling of zones or individual devices.
5. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:
 1. Open circuits, shorts, and grounds in designated circuits.
 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
 4. Loss of primary power at fire-alarm control unit.
 5. Ground or a single break in internal circuits of fire-alarm control unit.
 6. Abnormal ac voltage at fire-alarm control unit.
 7. Break in standby battery circuitry.
 8. Failure of battery charging.
 9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:
 1. Initiate notification appliances.
 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
 3. Record the event on system printer.

2.3 FIRE-ALARM CONTROL UNIT

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Notifier.
 2. Edwards (United Technologies Corp).
 3. Honeywell.

B. General Requirements for Fire-Alarm Control Unit:
 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
 c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 d. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.
 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

D. Initiating-Device, Notification- Appliance, and Signaling-Line Circuits:
 1. Install no more than 50 addressable devices on each signaling-line circuit.
 2. Serial Interfaces:
 a. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 b. One USB or RS 232 port for PC configuration.
 c. One RS 232 port for voice evacuation interface.

E. Smoke-Alarm Verification:
 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
3. Record events by the system printer.
4. Sound general alarm if the alarm is verified.
5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

F. Notification-Appliance Circuit:
1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

G. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.

H. Printout of Events: On receipt of signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble) and date and time of occurrence. Differentiate alarm signals from all other printed indications. Also print system reset event, including same information for device, location, date, and time. Commands initiate the printing of a list of existing alarm, supervisory, and trouble conditions in the system and a historical log of events.

I. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals and supervisory communicator transmitters shall be powered by 24-V dc source.
1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

J. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

K. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key- or wrench-operated switch.

2.5 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:
1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be four-wire type.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
6. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.
7. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
a. Rate-of-rise temperature characteristic of combination smoke- and heat-detection units shall be selectable at fire-alarm control unit for 15 or 20 deg F per minute.

b. Fixed-temperature sensing characteristic of combination smoke- and heat-detection units shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F.

c. Multiple levels of detection sensitivity for each sensor.

d. Sensitivity levels based on time of day.

B. Photoelectric Smoke Detectors:
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.6 CARBON MONOXIDE DETECTORS

A. General: Carbon monoxide detector listed for connection to fire-alarm system.
1. Mounting: Adapter plate for outlet box mounting.
2. Testable by introducing test carbon monoxide into the sensing cell.
3. Detector shall provide alarm contacts and trouble contacts.
4. Detector shall send trouble alarm when nearing end-of-life, power supply problems, or internal faults.
5. Comply with UL 2075.
6. Locate, mount, and wire according to manufacturer's written instructions.
7. Provide means for addressable connection to fire-alarm system.
8. Test button simulates an alarm condition.

2.7 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.
 1. Temperature sensors shall test for and communicate the sensitivity range of the device.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
2.8 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.

B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol. Provide weather proof rated horns where indicated.

D. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word “FIRE” is engraved in minimum 1-inch high letters on the lens.
 1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 2. Mounting: Wall mounted unless otherwise indicated.
 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 4. Flashing shall be in a temporal pattern, synchronized with other units.
 5. Strobe Leads: Factory connected to screw terminals.

2.9 MAGNETIC DOOR HOLDERS

A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
 1. Electromagnets: Require no more than 3 W to develop 25-lbf holding force.
 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
 3. Rating: 24-V ac or dc.
 4. Rating: 120-V ac.

B. Material and Finish: Match door hardware.

2.10 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.11 ADDRESSABLE INTERFACE DEVICE

A. General:
 1. Include address-setting means on the module.
 2. Store an internal identifying code for control panel use to identify the module type.
 3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall and to circuit-breaker shunt trip for power shutdown.
 1. Allow the control panel to switch the relay contacts on command.
 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.
2.12 SYSTEM PRINTER
A. Printer shall be listed and labeled as an integral part of fire-alarm system.

2.13 DEVICE GUARDS
A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 1. Factory fabricated and furnished by device manufacturer.
 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.
B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION
A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.
B. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
C. Manual Fire-Alarm Boxes:
 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.
D. Smoke- or Heat-Detector Spacing:
 1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
 2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
 3. Smooth ceiling spacing shall not exceed 30 feet.
 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A in NFPA 72.
 5. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
 6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.
E. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.
F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

G. Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location. Do not install smoke detectors in sprinklered elevator shafts.

H. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

I. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.

J. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

K. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.3 PATHWAYS

A. Plenum rated cable shall be used for all pathways except where cabling is in conduit.

B. Pathways above recessed accessible locations may be routed exposed.

C. Pathways above inaccessible locations shall be installed in EMT.

D. Pathways in exposed areas shall be routed in EMT and be painted red enamel.

E. Pathways from main fire alarm control panel to each zone/building shall be routed underground to lower level mechanical or electrical room. Initial auxiliary panel(s) shall be located in these rooms. All cabling within the building zone shall be installed as specified above.

3.4 ZONES

A. Provide a fire alarm zone for each building that is identified on architectural code plans (CP Series). Fire alarm activation and notification by zone/building.

3.5 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.

1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Smoke dampers in air ducts of designated HVAC duct systems.
2. Magnetically held-open doors.
3. Electronically locked doors and access gates.
4. Alarm-initiating connection to elevator recall system and components.
5. Alarm-initiating connection to activate emergency lighting control.
7. Supervisory connections at elevator shunt-trip breaker.
8. Supervisory connections at fire-extinguisher locations.
9. Alarm-initiating connection to kitchen hood fire extinguishing system.
10. Fire alarm system to be interfaced with intercommunications system to shunt audio from the intercom system when the fire alarm system is in an alarm condition. Provide fire alarm system with relay output for interface connections as required.
3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.7 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.8 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.9 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.10 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 283111
SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Protecting existing vegetation to remain.
 2. Removing existing vegetation.
 3. Clearing and grubbing.
 4. Stripping and stockpiling topsoil.
 5. Removing above- and below-grade site improvements.
 6. Temporary erosion- and sedimentation-control measures.

B. Related Sections:
 1. Division 01 Section "Temporary Facilities and Controls" for temporary utility services, construction and support facilities, security and protection facilities, and temporary erosion- and sedimentation-control measures.
 2. Division 01 Section "Execution" for field engineering and surveying.

1.3 DEFINITIONS

A. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.

B. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.

C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil and is the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of subsoil and weeds, roots, toxic materials, or other nonsoil materials.

D. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction, and indicated on Drawings.

E. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and indicated on Drawings.

F. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 MATERIAL OWNERSHIP

A. Except for stripped topsoil and other materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site. All stripped topsoil shall remain onsite and be distributed onsite per the Construction Manager's direction. See Earth Moving specification for soil material instruction.
1.5 SUBMITTALS

A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.
 1. Use sufficiently detailed photographs or videotape.
 2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plants designated to remain.

B. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

1.6 PROJECT CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

B. Salvageable Improvements: Carefully remove items indicated to be salvaged and store on Owner’s premises.

C. Utility Locator Service: Notify utility locator service and appropriate City and County agencies for area where Project is located before site clearing.

D. Do not commence site clearing operations until temporary erosion- and sedimentation-control and plant-protection measures are in place.

E. Protect existing trees as indicated on drawings.

F. The following practices are prohibited within protection zones:
 1. Storage of construction materials, debris, or excavated material.
 2. Parking vehicles or equipment.
 3. Foot traffic.
 4. Erection of sheds or structures.
 5. Impoundment of water.
 6. Excavation or other digging unless otherwise indicated.
 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
 8. Sediment encroachment.

G. Do not direct vehicle or equipment exhaust towards protection zones.

H. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

I. Soil Stripping, Handling, and Stockpiling: Perform only when the topsoil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Satisfactory Soil Material: Requirements for satisfactory soil material shall be provided by the Geotechnical Engineer.
 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site. Coordinate with Geotechnical engineer for acceptable soil material.
PART 3 - EXECUTION

3.1 PREPARATION

A. Protect and maintain benchmarks and survey control points from disturbance during construction.

B. Locate and clearly identify trees, shrubs, and other vegetation to remain.

C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY erosion AND SEDIMENTATION CONTROL

A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.

B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.

C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.

D. Contractor to keep inspection logs of erosion control measures and update provided Storm Water Pollution Prevention Plan (SWPPP).

3.3 TREE AND PLANT PROTECTION

A. General: Protect trees and plants remaining on-site according to requirements in Division 01 Section "Temporary Tree and Plant Protection."

B. Contractor to protect existing trees onsite as indicated on drawings.

C. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations, as indicated on drawings.

D. For trees to be removed, remove entire root ball, all root and organic materials.

3.4 EXISTING UTILITIES

A. Contractor to arrange for disconnecting and sealing indicated utilities that serve existing structures before site clearing, when requested by Contractor.
 1. Verify that utilities have been disconnected and capped that serve existing buildings before proceeding with site clearing.
 2. Utility service shall be maintained to the existing facilities during construction of the proposed building. Contractor shall coordinate with utility service providers to provide temporary service to the existing building as necessary. See demolition notes on drawings.

B. Locate, identify, disconnect, and seal or cap utilities serving existing buildings. Completely remove service lines, meters, poles, etc. associated with utility services.
 1. Arrange with utility companies to shut off indicated utilities.
 2. Owner will arrange to shut off indicated utilities when requested by Contractor.

C. Locate, identify, and disconnect utilities indicated to be abandoned in place.
D. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 1. Do not proceed with utility interruptions without Construction Managers and Owners written permission.

3.5 CLEARING AND GRUBBING

A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.

B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density per geotechnical report requirements.

3.6 TOPSOIL STRIPPING

A. Remove sod and grass before stripping topsoil.

B. Strip topsoil in a manner to prevent intermingling with underlying subsoil or other waste materials.
 1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects more than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.
 2. Geotechnical engineer to monitor stripping operations to observe that all unsuitable materials have been removed.

C. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 1. Do not stockpile topsoil within protection zones.
 2. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
 3. Stockpile surplus topsoil to allow for respreading deeper topsoil.

D. Remove all topsoil and all organic material from proposed building footprint and pavement areas. Excavate as deep as necessary to ensure all organic material has been removed.

3.7 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated from the site. See demolition notes on drawings.

B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
 2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.8 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus unsuitable soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.

B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.
SECTION 312000 – EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. The geotechnical report for the project was prepared by Kruger Technologies, Inc., dated July 6, 2023, Project No. 223119G.

1.2 SUMMARY

A. Section Includes:
 1. Excavating and backfilling trenches for utilities and pits for buried utility structures.
 2. Preparing subgrade for pavements and grass areas.
 3. General earthwork and excavation.

B. Related Sections:
 1. Section 311000 "Site Clearing" for site stripping, grubbing, stripping and stockpiling topsoil, and removal of above- and below-grade improvements and utilities.

1.3 UNCLASSIFIED SITE

A. All site work for this project is considered "unclassified." The term "unclassified" excavation shall be defined as meaning the site contractor bears the entire risk of the soil quantities and/or types (e.g. rock, clay, peat, silt, shale, etc.) encountered above the bottom of required excavations and over-excavated / treated soils areas. Above the bottom of required excavations, the site contractor shall bear the entire cost of such additional work in the event it becomes necessary for unsuitable soils to be handled, removed from the site, or for suitable fill material to be imported to the site. This definition of "unclassified" supersedes any contrary definitions or statements which may be contained in the specifications, plans, or other contract documents. The unclassified site shall include all work above the bottom of required excavations and/or required soil remediation/replacement.

B. The contractor shall be responsible to determine earthwork quantities and shall familiarize themselves with the geotechnical report. All import or export of earth material shall be the responsibility of the contractor at his expense.

1.4 DEFINITIONS

A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

C. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

D. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

E. Fill: Soil materials used to raise existing grades.

F. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
G. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

H. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.5 SUBMITTALS

A. Product Data: For each type of the following manufactured products required:
 1. Geotextiles.
 2. Controlled low-strength material, including design mixture.
 3. Warning tapes.

B. Qualification Data: For qualified testing agency.

C. Material Test Reports: For each on-site and borrow soil material proposed for fill and backfill according to Geotechnical Engineer requirements.

D. Preexcavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earth moving operations. Submit before earth moving begins.

E. Provide a sealed as-built topographic survey by a registered professional land surveyor of the detention facility after construction. The survey shall document the bottom of the detention facility and the side slopes are constructed per the planned grades, the detention facility is in the correct location, and has the designed volume.

1.6 QUALITY ASSURANCE

A. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.

B. Preexcavation Conference: Conduct conference at Project site.

1.7 PROJECT CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth moving operations.
 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing earth moving indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 1. Do not proceed with work on adjoining property until directed by Architect.

C. Utility Locator Service: Notify utility locator service and City and County agencies for area where Project is located before beginning earth moving operations.

D. Do not commence earth moving operations until temporary erosion- and sedimentation-control measures, are in place.
PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
 1. Liquid Limit: Less than 45
 2. Plasticity Index: Less than 25

D. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D2487, or a combination of these groups.
 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

E. Bedding Course: Naturally or artificially graded mixture of natural stone or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.

F. Sub-drainage Aggregate: Naturally or artificially graded mixture of natural stone, clean with no fines. Aggregate range shall be ½" to ¾".

2.2 GEOTEXTILES

A. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or polyesters; with elongation less than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
 1. Survivability: Class 3; AASHTO M 288.
 2. Grab Tensile Strength: 120 lbf; ASTM D 4632.
 3. Sewn Seam Strength: 222 lbf; ASTM D 4632.
 4. Tear Strength: 50 lbf; ASTM D 4533.
 5. Puncture Strength: 90 lbf; ASTM D 4833.
 6. Apparent Opening Size: No. 70 sieve, maximum; ASTM D 4751.
 7. Permittivity: 1.7 second-1, minimum; ASTM D 4491.
 8. UV Stability: 70 percent after 500 hours’ exposure; ASTM D 4355.

2.3 ACCESSORIES

A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored as follows:
 2. Yellow: Gas, oil, steam, and dangerous materials.
 3. Orange: Telephone and other communications.
 4. Blue: Water systems.
 5. Green: Sewer systems.

B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:
 2. Yellow: Gas, oil, steam, and dangerous materials.
 3. Orange: Telephone and other communications.
 4. Blue: Water systems.
 5. Green: Sewer systems.
PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations.

B. Protect and maintain erosion and sedimentation controls during earth moving operations.

C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

D. Prepare low-volume-change subgrade material beneath proposed building per Building Pad Preparation section in this specification.

3.2 DEWATERING

A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.

B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.

1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXPLOSIVES

A. Explosives: Do not use explosives.

3.4 EXCAVATION, GENERAL

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions above the bottom of required excavations. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials as determined by the Geotechnical Engineer.

3.5 EXCAVATION FOR WALKS AND PAVEMENTS

A. Evaluate surfaces under future walks and pavements to indicated lines, cross sections, elevations, and subgrades, and excavate unsuitable materials as determined by the geotechnical engineer.

3.6 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.

B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.

1. Clearance: As indicated on plans.

3.7 PAVEMENT SUBGRADE INSPECTION

A. Notify testing agency when excavations have reached required subgrade.
B. If Geotech Engineer determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

C. Proof-roll subgrade below proposed pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades. Proof-roll within two days of paving operations.
 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by the Geotechnical Engineer, and replace with compacted backfill or fill as directed to the proper moisture content and density.
 3. After proof rolling and repairing deep subgrade deficiencies, the entire subgrade should be scarified to a depth of 12 inches and uniformly compacted to at least 95% of the standard proctor maximum dry density to provide a uniform subgrade for pavement construction. Moisture content and density of subgrade to be checked within two days prior to the commencement of paving operations.

D. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, without additional compensation.

E. Subgrades under pavements and building pads shall be free of all organic material.

3.8 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.9 BACKFILL

A. Place and compact backfill in excavations promptly, but not before completing the following:
 1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
 2. Surveying locations of underground utilities for Record Documents.
 3. Testing and inspecting underground utilities.
 4. Removing concrete formwork.
 5. Removing trash and debris.
 6. Removing temporary shoring and bracing, and sheeting.
 7. Installing permanent or temporary horizontal bracing on horizontally supported walls.

B. Place backfill on subgrades free of mud, frost, snow, or ice.

C. Backfill tree root ball excavations with structural fill as determined by geotechnical engineer. Areas under pavements or building pads shall be compacted to 95% standard density. All other areas shall be compacted to 90% standard density.

3.10 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

D. Install a clay plug around pipes within 5’ of the building face to prevent water migration through the trench into the building. Plug material should consist of clay compacted at a water content at or above the soils optimum water content.
E. Utility trenches should be backfilled per plan details.

3.11 SOIL FILL
A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
B. Place and compact fill material in 8 inch loose lifts and compacted to at least 95% of the materials max dry density and moisture control.
C. Place soil fill on subgrades free of mud, frost, snow, or ice.
D. The exposed grade prior to fill being placed shall be scarified to a minimum depth of 12” and the moisture content should be adjusted to within the range recommended for structural fill. The material should then be proof-rolled, compacted, and inspected by the geotechnical engineer.
E. Bench existing slopes of 5:1 or greater where fill is to be placed.

3.12 SOIL MOISTURE CONTROL
A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction per the geotechnical report requirements.
 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 2. Remove and replace, or scarify and air dry, soil material that is not suitable per geotechnical engineer inspection.

3.13 COMPACTION OF SOIL BACKFILLS AND FILLS
A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
C. Compacted soil material in areas under pavements or building pads shall be compacted to 95% standard density. All other areas shall be compacted to 90% standard density.
D. Utility trenches – compaction testing to be performed every 200 cubic yards at backfill or each lift within 200 linear feet of trench, whichever is less.

3.14 BUILDING PAD PREPARATION
A. Prepare low-volume change material, capillary barrier, and vapor barrier for the building pad. The LVC shall consist of the following section from the bottom: 18” of KDOT AB-3 aggregate or MoDOT Type 5, limestone screenings, or any soil type that has a liquid limit of less than 45 and a plasticity index of less than 25.
B. Moisture condition and compact native soils below the LVC zone as necessary per geotechnical report and onsite geotechnical representative.
C. Proof-roll subgrade below proposed building pads with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades. Proof-roll within two days of building pad construction.
 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by the Geotechnical Engineer, and replace with compacted backfill or fill as directed to the proper moisture content and density.

3. After proof rolling and repairing deep subgrade deficiencies, the entire subgrade should be scarified and uniformly compacted to at least 95% of the standard proctor maximum dry density to provide a uniform subgrade for building pad construction. Moisture content and density of subgrade to be checked within two days prior to the commencement of building pad construction.

3.15 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 1. Provide a smooth transition between adjacent existing grades and new grades.
 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

B. Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 1. Turf or Unpaved Areas: Plus or minus 1 inch.
 2. Walks: Plus or minus 1/4 inch.
 3. Pavements: Plus or minus 1/4 inch.

3.16 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 2. Determine that fill material and maximum lift thickness comply with requirements.
 3. Determine, at the required frequency, that in-place density of compacted fill complies with requirements.

B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.

C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.

D. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.17 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Install erosion control measures as indicated on the plans. Install additional measures as necessary to prevent erosion or damage to erosion control measures.

C. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.

D. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.
3.18 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Transport surplus satisfactory soil offsite. Stockpile / spread topsoil per contract documents prior to soil removal from site.

1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000
SECTION 321216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Hot-mix asphalt paving.

B. Related Sections:
 1. Section 312000 "Earth Moving" for aggregate subbase and base courses.
 2. Division 32 Sections for other paving installed as part of crosswalks in asphalt pavement areas.

1.3 DEFINITION

A. Hot-Mix Asphalt Paving Terminology: Refer to ASTM D 8 for definitions of terms.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include technical data and tested physical and performance properties.
 1. Job-Mix Designs: For each job mix proposed for the Work.

B. Material Certificates: For each paving material, from manufacturer. Certifying that each material complies with or exceeds specified requirements.

C. Material Test Reports: For each paving material.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A paving-mix manufacturer registered with a history of successful performance.

B. Installer Qualifications: Engage an experienced installer who is trained and approved for installations required for this Project.

C. Testing Agency Qualifications: Qualified according to ASTM D 3666 for testing indicated.

D. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of the pavement specifications called out in the geotechnical report for asphalt paving work.

E. Preinstallation Conference: Conduct conference at a site acceptable to the Construction Manager.
 1. Review methods and procedures related to hot-mix asphalt paving including, but not limited to, the following:
 a. Review proposed sources of paving materials, including capabilities and location of plant that will manufacture hot-mix asphalt.
 b. Review condition of subgrade and preparatory work.
 c. Review requirements for protecting paving work, including restriction of traffic during installation period and for remainder of construction period.
d. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pavement-marking materials to Project site in original packages with seals unbroken and bearing manufacturer's labels containing brand name and type of material, date of manufacture, and directions for storage.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:
 1. Tack Coat: Minimum surface temperature of 50 deg F.
 2. Slurry Coat: Comply with weather limitations in ASTM D 3910.
 3. Asphalt Base Course: Minimum surface temperature of 40 deg F and rising at time of placement.
 4. Asphalt Surface Course: Minimum surface temperature of 50 deg F at time of placement and when base is dry.

PART 2 - PRODUCTS

2.1 MATERIALS AND MIXES

A. General: All work on the site as herein called for shall be done in accord with the American Public Works Association (APWA), Kansas City Metropolitan Chapter, Division II, "Construction and Materials Specifications for Paving", Section 2200, latest edition. The work herein required is not of the magnitude of work described in the aforesaid Standard Specification, therefore only applicable limitations will be enforced. However, this is not a relaxing of the requirements for the quality of the work. When work is obviously substandard, necessary tests will be made for compliance to the specifications. Work found to be in noncompliance with the specification shall be removed and replaced at the expense of the Contractor, including the costs of all tests.
 1. Use locally available materials and gradations that exhibit a satisfactory record of previous installations.

B. Base Course Mix: Conform to requirements for mix designations APWA Type 1-01, per section 2205 of referenced APWA Specifications. Recycled content per APWA specifications allowed.

C. Surface Course Mix: Conform to requirements for mix designation APWA Type 3-01, per Section 2205 of referenced APWA Specifications. Recycled content per APWA specifications allowed.

D. Marking Paint: Alkyd-resin type, ready–mixed complying with AASHTO M248, Type I.

2.2 ASPHALT-AGGREGATE MIXTURE

A. Provide plant-mixed, hot-laid asphalt-aggregate mixture complying with ASTM D 3515 and as recommended by local paving authorities to suit project conditions.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that subgrade is dry and in suitable condition to begin paving.
B. Proof-roll subgrade below proposed pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades. Proof-roll within two days of paving operations.
 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by the Geotechnical Engineer, and replace with compacted backfill or fill as directed to the proper moisture content and density.
 3. After proof rolling and repairing deep subgrade deficiencies, the entire subgrade should be scarified to a depth of 12 inches and uniformly compacted to at least 95% of the standard proctor maximum dry density to provide a uniform subgrade for pavement construction. Moisture content and density of subgrade to be checked within two days prior to the commencement of paving operations.

C. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, without additional compensation.

D. Proceed with paving only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

A. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.

B. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd.
 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.3 HOT-MIX ASPHALT PLACING

A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand to areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.
 1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
 2. Place hot-mix asphalt surface course in single lift.
 3. Spread mix at minimum temperature required by the mix design and outside temperature.
 4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
 5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.

B. Place paving in consecutive strips not less than 10 feet wide unless infill edge strips of a lesser width are required.
 1. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Complete a section of asphalt base course before placing asphalt surface course.

C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.4 JOINTS

A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
 1. Clean contact surfaces and apply tack coat to joints.
 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.
 3. Offset transverse joints, in successive courses, a minimum of 24 inches.
 4. Construct transverse joints at each point where paver ends a day’s work and resumes work at a subsequent time.
 5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
6. Compact asphalt at joints to a density within 2 percent of specified course density.

3.5 COMPACCIÓN

A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
 1. Complete compaction before mix temperature cools to 185 deg F.

B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.

C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:
 1. Average Density: 96 percent of reference laboratory density according to ASTM D 6927, but not less than 94 percent nor greater than 100 percent.

D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.

E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.

F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.

G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.

H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.6 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.

B. Allow paving to age for 5 days before starting pavement marking.

C. Sweep and clean surface to eliminate loose material and dust.

D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.

3.7 INSTALLATION TOLERANCES

A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:
 1. Base Course: Plus or minus 1/4 inch.
 2. Surface Course: Plus 1/4 inch, no minus.

B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:
 1. Base Course: 1/4 inch.
 2. Surface Course: 1/8 inch.
 3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch.
3.8 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D 3549.

C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.

D. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM standards.
 1. Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D 2041, and compacted according to job-mix specifications.
 2. In-place density of compacted pavement will be determined by testing core samples according to ASTM D 1188 or ASTM D 2726.
 a. One core sample will be taken for every 1000 sq. yd. or less of installed pavement, with no fewer than 3 cores taken.
 b. Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D 2950 and correlated with ASTM D 1188 or ASTM D 2726.

E. Replace and compact hot-mix asphalt where core tests were taken.

F. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

3.9 DISPOSAL

A. Except for material indicated to be recycled, remove excavated materials from Project site and legally dispose of them in an EPA-approved landfill.
 1. Do not allow milled materials to accumulate on-site.

END OF SECTION 321216
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Curbs and gutters.
 2. Walks.
 3. Driveways.
 4. Pavement.

B. Related Sections:
 1. Section 321373 "Concrete Paving Joint Sealants" for joint sealants in expansion and contraction joints within concrete paving and in joints between concrete paving and asphalt paving or adjacent construction.

C. All concrete shall conform with the Kansas City Metro Materials Board minimum 4000 PSI granite mix (KCMMB 4K). If there are any contradictions to this mix in this specification, the KCMMB 4K mix shall govern.

1.3 DEFINITIONS
A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.

B. Other Action Submittals:
 1. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

C. Qualification Data: For qualified Installer of detectable warnings, ready-mix concrete manufacturer, and testing agency.

D. Material Certificates: For the following, from manufacturer:
 1. Cementitious materials.
 2. Steel reinforcement and reinforcement accessories.
 3. Admixtures.
 4. Curing compounds.
 5. Applied finish materials.
 6. Bonding agent or epoxy adhesive.
 7. Joint fillers.

E. Material Test Reports: For each of the following:
 1. Aggregates. Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.

F. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Detectable Warning Installer Qualifications: An employer of workers trained and approved by manufacturer of brick paving systems.

B. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").

C. Testing Agency Qualifications: Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.

D. Concrete Testing Service: Engage a qualified testing agency to perform material evaluation tests and to design concrete mixtures.

E. ACI Publications: Comply with ACI 301 unless otherwise indicated.

F. Preinstallation Conference: Conduct conference at Project site.
 1. Review methods and procedures related to concrete paving, including but not limited to, the following:
 a. Concrete mixture design.
 b. Quality control of concrete materials and concrete paving construction practices.
 2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete paving subcontractor.
 e. Manufacturer's representative of stamped concrete paving system used for detectable warnings.

1.6 PROJECT CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

PART 2 - PRODUCTS

2.1 FORMS

A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
 1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less. Do not use notched and bent forms.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.2 STEEL REINFORCEMENT

A. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from steel wire into flat sheets.

B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60; deformed.

C. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 plain-steel bars. Cut bars true to length with ends square and free of burrs.

D. Tie Bars: ASTM A 615/A 615M, Grade 60, deformed.
2.3 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of same type, brand, and source throughout Project:
 1. Portland Cement: ASTM C 150, gray or white portland cement Type I.
 a. Fly Ash: ASTM C 618, Class C.
 2. Blended Hydraulic Cement: ASTM C 595, Type IS, portland blast-furnace slag or Type IP, portland-pozzolan cement.

B. Normal-Weight Aggregates: Aggregates shall be in accordance with KCMMB-4K specifications. Provide aggregates from a single source with documented service-record data of at least 10 years’ satisfactory service in similar paving applications and service conditions using similar aggregates and cementitious materials.
 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement and shall meet KCMMB 4K mix.

C. Water: Potable and complying with ASTM C 94/C 94M.

E. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

2.4 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry.

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Axim Italcementi Group, Inc.; Caltexol CIMFILM.
 b. BASF Construction Chemicals, LLC; Confilm.
 c. ChemMasters; Spray-Film.
 d. Conspec by Dayton Superior; AquaFilm.
 e. Dayton Superior Corporation; SureFilm (J-74).
 f. Edoco by Dayton Superior; BurkeFilm.
 g. Euclid Chemical Company (The), an RPM company; Eucobar.
 h. Kaufman Products, Inc.; VaporAid.
 i. Lambert Corporation; LAMBCO Skin.
 j. L&M Construction Chemicals, Inc.; E-CON.
 k. Meadows, W. R., Inc.; EVAPRE.
 l. Metalcrete Industries; Waterhold.
 m. Nox-Crete Products Group; MONOFILM.
 n. Sika Corporation, Inc.; SikaFilm.
 o. SpecChem, LLC; SpecFilm.
 p. Symons by Dayton Superior; Finishing Aid.
 q. TK Products, Division of Sierra Corporation; TK-2120 TRI-FILM.
 r. Unitex; PRO-FILM.
 s. Vexcon Chemicals Inc.; Certi-Vex EnvioAssist.
E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anti-Hydro International, Inc.; A-H Curing Compound #2 DR WB.
 b. ChemMasters; Safe-Cure Clear.
 c. Conspec by Dayton Superior; D.O.T. Resin Cure, DSSCC Clear Resin Cure.
 d. Dayton Superior Corporation; Day-Chem Rez Cure (J-11-W).
 e. Edoco by Dayton Superior; DSSCC Clear Resin Cure, Resin Emulsion Cure V.O.C. (Type I).
 f. Euclid Chemical Company (The), an RPM company; Kurez W VOX.
 g. Kaufman Products, Inc.; Thintfilm 420.
 h. Lambert Corporation; AQUA KURE - CLEAR.
 i. L&M Construction Chemicals, Inc.; L&M CURE R.
 j. Meadows, W. R., Inc.; 1100-CLEAR SERIES.
 k. Nox-Crete Products Group; Resin Cure E.
 l. SpecChem, LLC; PaveCure Rez.
 m. Symons by Dayton Superior; Resi-Chem Clear.
 n. Tamms Industries, Inc., Euclid Chemical Company (The); TAMMSCURE WB 30C.
 o. TK Products, Division of Sierra Corporation.

2.5 RELATED MATERIALS

A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulose fiber or ASTM D 1752, cork or self-expanding cork in preformed strips.

B. Epoxy Bonding Adhesive: ASTM C 881/C 881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:
 1. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

C. Chemical Surface Retarder: Water-soluble, liquid, set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ChemMasters; Exposee.
 b. Conspec by Dayton Superior; Delay S.
 c. Dayton Superior Corporation; Sure Etch (J-73),
 d. Edoco by Dayton Superior; True Etch Surface Retarder.
 e. Euclid Chemical Company (The); an RPM company; Surface Retarder Formula S.
 g. Meadows, W. R., Inc.; TOP-STOP.
 h. Metalcrete Industries; Surfard.
 i. Nox-Crete Products Group; CRETE-NOX TA.
 j. Scofield, L. M. Company; LITHOTEX Top Surface Retarder.
 k. Sika Corporation, Inc.; Rugasol-S.
 l. SpecChem, LLC; Spec Etch.
 m. TK Products, Division of Sierra Corporation; TK-6000 Concrete Surface Retarder.
 n. Unitex; TOP-ETCH Surface Retarder.
 o. Vexcon Chemicals Inc.; Certi-Vex Enviset.

2.6 WHEEL STOPS

A. Wheel Stops: Precast, air-entrained concrete, 3000-psi minimum compressive strength, 4-1/2 inches high by 9 inches wide by 72 inches long. Provide chamfered corners and drainage slots on underside and holes for anchoring to substrate.
 1. Dowels: Galvanized steel, 3/4 inch in diameter, 10-inch minimum length.
2.7 CONCRETE CURBS

A. Curbs to comply with the plan details.

2.8 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience. Use ASTM C150, Type 1 – portland cement. Aggregates per KCMMB-4K specifications.
 1. See concrete requirements in geotechnical report.
 2. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
 3. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that meet or exceed requirements.

B. Proportion mixtures to provide normal-weight concrete with the following properties:
 2. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.45.
 3. Slump Limit: 4 inches plus or minus 1 inch for paving and 2” plus or minus one inch for curbs and gutters.

C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 1. Air Content: 6 percent plus or minus 1 percent.

D. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.

E. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
 1. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

F. Cementitious Materials: Limit percentage by weight of cementitious materials other than portland cement according to ACI 301 requirements as follows:
 1. Fly Ash or Pozzolan: 25 percent.
 2. Ground Granulated Blast-Furnace Slag: 50 percent.
 3. Combined Fly Ash or Pozzolan, and Ground Granulated Blast-Furnace Slag: 50 percent, with fly ash or pozzolan not exceeding 25 percent.

2.9 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M, and ASTM C 1116/C 1116M. Furnish batch certificates for each batch discharged and used in the Work.
 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 1. For concrete batches of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 2. For concrete batches larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Notify testing agency when excavations have reached required subgrade.

B. Proof-roll subgrade below proposed pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades. Proof-roll within two days of paving operations.
 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by the Geotechnical Engineer, and replace with compacted backfill or fill as directed to the proper moisture content and density.
 3. After proof rolling and repairing deep subgrade deficiencies, the entire subgrade should be scarified to a depth of 12 inches and uniformly compacted to at least 95% of the standard proctor maximum dry density to provide a uniform subgrade for pavement construction. Moisture content and density of subgrade to be checked within two days prior to the commencement of paving operations.

C. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, without additional compensation.

D. Proceed with paving only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT

A. General: Comply with CRSI’s "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

D. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

E. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D 3963M.

F. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch (50-mm) overlap of adjacent mats.
3.5 JOINTS

A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.

B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
 1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
 2. Provide tie bars at sides of paving strips where indicated.
 3. Butt Joints: Use bonding agent or epoxy bonding adhesive at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
 5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
 1. Locate expansion joints at intervals of 50 feet unless otherwise indicated.
 2. Extend joint fillers full width and depth of joint.
 3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
 4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
 6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows:
 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate grooving-tool marks on concrete surfaces.
 a. Tolerance: Ensure that grooved joints are within 3 inches either way from centers of dowels.
 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades.
 Cut 1/8-inch- wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 a. Tolerance: Ensure that sawed joints are within 3 inches either way from centers of dowels.
 3. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch radius. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.

B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.

C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.
E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.

F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.
 1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices.

H. Screed paving surface with a straightedge and strike off.

I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

J. Curbs and Gutter: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.

K. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.
 1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.

L. Cold-Weather Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
 2. Do not use frozen materials or materials containing ice or snow.
 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.

M. Hot-Weather Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:
 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 3. Fog-spray forms and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.7 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.
 1. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.
 2. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.

3.8 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound or a combination of these as follows:
 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period using cover material and waterproof tape.
 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas that have been subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.9 PAVING TOLERANCES

A. Comply with tolerances in ACI 117 and as follows:
 1. Elevation: 1/4 inch.
 3. Surface: Gap below 10-foot long, unleveled straightedge not to exceed 1/2 inch.
 4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
 5. Lateral Alignment and Spacing of Dowels: 1 inch.
 7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
 8. Joint Spacing: 3 inches.

3.10 CONCRETE CURBS

A. Install curbs per plan details.

3.11 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.

B. Allow paving to age for 30 days before starting pavement marking.

C. Sweep and clean surface to eliminate loose material and dust.

D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer’s recommended rates to provide a minimum wet film thickness of 15 mils.
3.12 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements outlined in the geotechnical report.

3.13 REPAIRS AND PROTECTION

A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.

B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.

C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 321313
SECTION 321373 - CONCRETE PAVING JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Cold-applied joint sealants.
 2. Hot-applied joint sealants.

B. Related Sections:
 1. Section 321216 "Asphalt Paving" for constructing joints between concrete and asphalt pavement.
 2. Section 321313 "Concrete Paving" for constructing joints in concrete pavement.

1.3 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product indicated.

B. Pavement-Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Product Certificates: For each type of joint sealant and accessory, from manufacturer.

C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for joint sealants.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Source Limitations: Obtain each type of joint sealant from single source from single manufacturer.

C. Product Testing: Test joint sealants using a qualified testing agency.
 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.

1.6 PROJECT CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:
1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer based on testing and field experience.

B. Colors of Exposed Joint Sealants: As indicated by manufacturer's designations.

2.2 COLD-APPLIED JOINT SEALANTS

A. Single-Component, Nonsag, Silicone Joint Sealant for Concrete: ASTM D 5893, Type NS.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crafco Inc., an ERGON company; RoadSaver Silicone.
 b. Dow Corning Corporation; 888.
 c. Pecora Corporation; 301 NS.

B. Single-Component, Self-Leveling, Silicone Joint Sealant for Concrete: ASTM D 5893, Type SL.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crafco Inc., an ERGON company; RoadSaver Silicone SL.
 b. Dow Corning Corporation; 890-SL.
 c. Pecora Corporation; 300 SL.

C. Multicomponent, Pourable, Traffic-Grade, Urethane Joint Sealant for Concrete: ASTM C 920, Type M, Grade P, Class 25, for Use T.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

2.3 HOT-APPLIED JOINT SEALANTS

 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crafco Inc., an ERGON company; Superseal 444/777.

 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Meadows, W. R., Inc.; Sealtight Hi-Spec or Sealtight 3405.
 b. Right Pointe; D-3405 Hot Applied Sealant.

2.4 JOINT-SEALANT BACKER MATERIALS

A. General: Provide joint-sealant backer materials that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by joint-sealant manufacturer based on field experience and laboratory testing.
B. Round Backer Rods for Cold- and Hot-Applied Joint Sealants: ASTM D 5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.

C. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D 5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.

D. Backer Strips for Cold- and Hot-Applied Joint Sealants: ASTM D 5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

2.5 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions.

B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.

B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install joint-sealant backings of kind indicated to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of joint-sealant backings.
 2. Do not stretch, twist, puncture, or tear joint-sealant backings.
 3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install joint sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place joint sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:
 1. Remove excess joint sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.

F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

3.4 CLEANING

A. Clean off excess joint sealant or sealant smears adjacent to joints as the Work progresses, by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

3.6 PAVEMENT-JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Joints within cement concrete pavement:
 1. Joint Location:
 b. Other joints as indicated.
 2. Silicone Joint Sealant for Concrete: Single component, nonsag or single component, self-leveling.
 3. Urethane Joint Sealant for Concrete: Multicomponent, pourable.

B. Joint-Sealant Application: Joints between cement concrete and asphalt pavement.
 1. Joint Location:
 a. Joints between concrete and asphalt pavement.
 3. Retain subparagraph below if joint sealants specified are offered in a choice of colors and colors are not specified on Drawings. Typically, color choice is not available for pavement joint sealants.
 4. Joint-Sealant Color: As indicated by manufacturer's designations.

END OF SECTION 321373
SECTION 323113 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Chain-link fences.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
 1. Fence and gate posts, rails, and fittings.
 2. Chain-link fabric, reinforcements, and attachments.
 3. Gates and hardware.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.

1.4 PROJECT CONDITIONS
A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.5 WARRANTY
A. Special Warranty: Manufacturer's standard form in which Installer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Faulty operation of gates.
 b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 2. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CHAIN-LINK FENCE FABRIC
A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:
 1. Fabric Height: Fence to surround track to be 6' high.
 2. Steel Wire Fabric: Wire with a diameter of 0.148 inch, 9 gauge.
2.2 FENCE FRAMING

A. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 based on the following:

1. Fence Height: As indicated on Drawings.
 a. Line Post: 2.375 inches in diameter, SS40 (3.12 lbs/ft)
 b. End, Corner and Pull Post: 2.875 inches in diameter, SS40 (4.64 lbs/ft)

 a. Top Rail: 1.66 inches in diameter.

4. Metallic Coating for Steel Framing:
 a. Type A zinc coating.

5. Vinyl coating over metallic coating.
 a. Color: Black, complying with ASTM F 934.

2.3 TENSION WIRE

A. Vinyl-Coated Steel Wire: 0.177-inch diameter, tension wire complying with ASTM F 1664, Class 2b fused zinc-coated steel wire.

2.4 SWING GATES

A. General: Comply with ASTM F 900 for gate posts and single and double swing gate types.

1. Gate Leaf Width: As indicated on drawings.
2. Gate Fabric Height: As indicated on drawings.

B. Pipe and Tubing:

1. Zinc-Coated Steel: Comply with ASTM F 1043 and ASTM F 1083; protective coating and finish to match fence framing.
2. Gate Posts: Round tubular steel, 2.875 inches in diameter (5.79 lbs/ft)
3. Gate Frames and Bracing: Round tubular steel matching fencing

C. Frame Corner Construction: Assembled with corner fittings.

D. Hardware:
1. Hinges: 360-degree inward and outward swing.
2. Latches permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.
3. Provide a gate stop for all gates.

E. Pipe and Tubing:
1. Zinc-Coated Steel: Protective coating and finish to match fence framing.
2. Gate Posts: Round tubular steel, 4.00 inches in diameter (9.11 lf/ft), coating matching fencing.
3. Gate Frames and Bracing: Round tubular steel, matching fencing

F. Frame Corner Construction: Welded and 3/8 inch diameter, adjustable truss rods for panels 5 feet or wider

G. Hardware:
1. Provide latch. Padlock and chain to be provided by the Owner.
2. Tire with Post: Provide inflatable tire on galvanized post at leading edge of gate. Tire shall swivel on post.

2.5 FITTINGS
A. General: Comply with ASTM F 626.

2.6 GROUT AND ANCHORING CEMENT
A. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout, recommended in writing by manufacturer, for exterior applications.
B. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended in writing by manufacturer, for exterior applications.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.
 1. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Stake locations of fence lines, gates, and terminal posts. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 INSTALLATION, GENERAL
A. Install chain-link fencing to comply with ASTM F 567 and more stringent requirements indicated.
3.4 CHAIN-LINK FENCE INSTALLATION

A. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.

B. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.

1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.

2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Concealed Concrete: Top 2 inches below grade to allow covering with concrete sidewalk.

C. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 30 degrees or more.

D. Line Posts: Space line posts uniformly at 8’ o.c.

E. Tension Wire: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:

1. Extended along bottom of fence fabric. Install top tension wire through post cap loops. Install bottom tension wire within 6 inches of bottom of fabric and tie to each post with not less than same diameter and type of wire.

F. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.

G. Chain-Link Fabric: Apply fabric to outside of enclosing framework. Leave 1 inch between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

H. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric per ASTM F 626. Bend ends of wire to minimize hazard to individuals and clothing.

1. Maximum Spacing: Tie fabric to line posts at 12 inches o.c. and to braces at 24 inches o.c.

3.5 GATE INSTALLATION

A. Install gates according to manufacturer’s written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

3.6 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Lubricate hardware and other moving parts.

END OF SECTION 323113
SECTION 323119 - DECORATIVE METAL FENCES AND GATES

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Decorative Metallic-Coated Steel Swing gates (323119.A02).

B. Related Sections:
 1. Section 033000 "Cast-in-Place Concrete" for post concrete fill.
 2. Section 087100 "Door Hardware" for push exit device for swing gate.
 3. Section 310500 "Site Clearing and Earthwork" for site excavation, fill, and backfill where decorative metal fences and gates are located.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include dimensioned illustrations of each gate.

B. Shop Drawings: For gates and gate operators. Include plans, elevations, sections, details, and attachments to other work.
 1. Include diagrams for power, signal, and control wiring.
 2. Submit drawings for slide gate operator showing connections to adjacent construction, range of travel, and all electrical and mechanical connections to the operator. All underground runs of electrical lines and inductive vehicle obstruction loop locations shall be indicated on drawings. Drawings shall also show the size and location of the concrete mounting pad.

C. Samples: For each fence and gate material specified.
 1. Provide Samples 12 inches square of decorative steel fence and of decorative aluminum gate. Sample shall include top rail and extended pickets in color specified.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Welding certificates.

C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for decorative metallic-coated steel tubular picket fences, including finish, indicating compliance with referenced standard and other specified requirements.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For gate operators to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications for Gate Operators: A company specializing in the manufacture of gate operators with a minimum of five years experience manufacturing gate operators of this type and design.
B. Installer Qualifications: Fabricator of products.

C. Installer Qualification for Gate Operators: A minimum of three years experience installing similar equipment.

PART 2 PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Lightning-Protection System: Maximum grounding-resistance value of 25 ohms under normal dry conditions.

2.2 DECORATIVE METALLIC-COATED-STEEL SWING GATES

A. Decorative Metallic-Coated Steel Tubular Picket Fence - Swing Gates: Comply with ASTM F 2408, for light industrial (commercial) application (class).
 1. Basis-of-Design Product: Subject to compliance with requirements, provide "Montage Plus Welded Ornamental Steel Majestic" with standard picket spacing, or comparable product by one of the following:
 a. Ameristar Fence Products
 b. Master Halco.
 c. Merchants Metals; a division of MMI Products, Inc.
 d. Payne Fence Products; a division of Payne Metal Works, Inc.
 e. Xcel Fence.

B. Provide fencing manufacturer's standard sizes and metal thicknesses, but not less than the following:
 1. Posts, Galvanized-Steel Frames and Bracing: Square tubes 3 by 3 inches formed from 0.108-inch nominal-thickness, metallic-coated steel sheet or formed from 0.105-inch nominal-thickness steel sheet and hot-dip galvanized after fabrication.
 3. Rails: Provide manufacturer's standard double-wall channels.
 a. Size: 1-1/2 by 1-3/8 to 1-1/2 inches.
 b. Metal and Thickness: 0.108-inch nominal-thickness, metallic-coated steel sheet or formed from 0.105-inch nominal-thickness steel sheet and hot-dip galvanized after fabrication.
 4. Pickets: Square tubes.
 a. Size: ¾-inch square.
 b. Metal and Thickness: 0.079-inch nominal-thickness, metallic-coated steel sheet or 0.075-inch nominal-thickness, uncoated steel sheet, hot-dip galvanized after fabrication.
 c. Terminate tops of pickets at top rail for flush top appearance.
 d. Picket Spacing: 4 inches clear, maximum.
 e. Pickets shall pass through bottom rail and terminate 2 inches above finished grade.
 5. Fasteners: Manufacturer's standard concealed fastening system.
 7. Galvanizing: For components indicated to be galvanized and for which galvanized coating is not specified in ASTM F 2408, hot-dip galvanize to comply with ASTM A 123/A 123M. For hardware items, hot-dip galvanize to comply with ASTM A 153/A 153M.

C. Gate Configuration:
 1. Height: As indicated on Drawings.
 2. Width: As indicated on Drawings.

D. Hardware: Latches permitting operation from both sides of gate, hinges, and keepers for each gate leaf more than 5 feet wide. Provide center gate stops and cane bolts for pairs of gates. Fabricate latches with integral eye openings for padlocking; padlock accessible from both sides of gate.

E. Hinges: BHMA A156.1, Grade 1, suitable for exterior use.
 2. Material: Wrought steel, forged steel, cast steel, or malleable iron; galvanized.

F. Rim Locks: BHMA A156.5, Grade 1, suitable for exterior use.
 1. Function: 627 - Interlocking deadbolt operated by key from outside and by turn from inside.
2. Material: Cast, forged, or extruded brass or bronze.
3. Mounting Plate: Configuration necessary for mounting locks. Fabricate from 1/8-inch-thick, steel plate; galvanized or aluminum plate.

G. Cane Bolts: Provide for inactive leaf of pairs of gates. Fabricated from 1/2-inch-diameter, round steel bars, hot-dip galvanized after fabrication. Finish to match gates. Provide galvanized-steel pipe strikes to receive cane bolts in both open and closed positions.

H. Finish exposed welds to comply with NOMMA Guideline 1, [Finish #2 - completely sanded joint, some undercutting and pinholes okay] [Finish #3 - partially dressed weld with splatter removed] [Finish #4 - good-quality, uniform undressed weld with minimal splatter].

I. Galvanizing: For items other than hardware that are indicated to be galvanized, hot-dip galvanize to comply with ASTM A 123/A 123M. For hardware items, hot-dip galvanize to comply with ASTM A 153/A 153M.

2.3 ALUMINUM

A. Aluminum, General: Provide alloys and tempers with not less than the strength and durability properties of alloy and temper designated in paragraphs below for each aluminum form required.

B. Extrusions: ASTM B 221, Alloy 6063-T5.

2.4 STEEL AND IRON

A. Plates, Shapes, and Bars: ASTM A 36/A 36M.
B. Bars (Pickets): Hot-rolled, carbon steel complying with ASTM A 29/A 29M, Grade 1010.
 C. Tubing: ASTM A 500/A 500M, cold-formed steel tubing.
 D. Bar Grating: NAAMM MBG 531.
 1. Bars: Hot-rolled steel strip, ASTM A 1011/A 1011M, Commercial Steel, Type B.
 E. Uncoated Steel Sheet: Hot-rolled steel, ASTM A 1011/A 1011M, Structural Steel, Grade 45 or cold-rolled steel sheet, ASTM A 1008/A 1008M, Structural Steel, Grade 50.
 F. Galvanized-Steel Sheet: ASTM A 653/A 653M, structural quality, Grade 50, with G90 coating.
 G. Aluminum-Zinc, Alloy-Coated Steel Sheet: ASTM A 792/A 792M, structural quality, Grade 50, with AZ60 coating.
 H. Castings: Either gray or malleable iron unless otherwise indicated.
 2. Malleable Iron: ASTM A 47/A 47M.

2.5 MISCELLANEOUS MATERIALS

A. Concrete: Normal-weight, air-entrained, ready-mix concrete complying with requirements in Section 033000 "Cast-in-Place Concrete" with a minimum 28-day compressive strength of 3000 psi, 3-inch slump, and 1-inch maximum aggregate size.

B. Nonshrink Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M and specifically recommended by manufacturer for exterior applications.
2.6 METALLIC-COATED-STEEL FINISHES

A. Galvanized Finish: Clean welds, mechanical connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

B. Surface Preparation: Clean surfaces with nonpetroleum solvent so surfaces are free of oil and other contaminants. After cleaning, apply a zinc-phosphate conversion coating suited to the organic coating to be applied over it. Clean welds, mechanical connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

C. Powder Coating: Immediately after cleaning and pretreating, apply 2-coat finish consisting of [zinc-rich] epoxy prime coat and TGIC polyester topcoat, with a minimum dry film thickness of 2 mils for topcoat. Comply with coating manufacturer's written instructions to achieve a minimum total dry film thickness of 4 mils.
 1. Color and Gloss: Manufacturer's standard Black.
 2. Comply with surface finish testing requirements in ASTM F 2408.

2.7 ALUMINUM FINISHES

A. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 2 mils. Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.

PART 3 EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, construction layout, and other conditions affecting performance of the Work.

B. Do not begin installation before final grading is completed unless otherwise permitted by Architect.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 DECORATIVE FENCE INSTALLATION

A. Install fences according to manufacturer's written instructions.

B. Post Excavation: Drill or hand-excavate holes for posts in firm, undisturbed soil. Excavate holes to a diameter of not less than 4 times post size and a depth of not less than 24 inches plus 3 inches for each foot or fraction of a foot that fence height exceeds 4 feet.

C. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.
 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 2. Concrete Fill: Place concrete around posts and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Concealed Concrete: Top 2 inches below grade to allow covering with surface material. Slope top surface of concrete to drain water away from post.
 3. Space posts uniformly at 6 feet o.c.
3.4 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

3.5 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Automatic Gate Operators: Energize circuits to electrical equipment and devices. Adjust operators, controls, safety devices, and limit switches.
 1. Hydraulic Operators: Purge operating system, adjust pressure and fluid levels, and check for leaks.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Lubricate hardware, gate operators, and other moving parts.

3.6 DEMONSTRATION

A. Train Owner's personnel to adjust, operate, and maintain gates.

END OF SECTION 323119
SECTION 331100 – WATER UTILITY DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes water-distribution piping and related components outside the building for a domestic service line and fire service line.

1.3 DEFINITIONS
A. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated, including but not limited to, pipe, fittings, fire hydrant, valves, and bedding.
B. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.
B. Piping materials shall bear label, stamp, or other markings of specified testing agency.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
D. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.
E. Comply with FMG's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fire-service-main products.
F. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
G. NSF Compliance:
 1. Comply with NSF 14 for plastic potable-water-service piping. Include marking "NSF-pw" on piping.
 2. Comply with NSF 61 for materials for water-service piping and specialties for domestic water.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 2. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:
 1. Do not proceed with interruption of water-distribution service without Construction Manager's and Owner's written permission.

1.8 COORDINATION

A. Coordinate the connection to the existing water mains with the City and Construction Manager, to minimize interruption of service.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. For 4” and 8” Service Lines - PVC, AWWA Pipe: AWWA C900-97, Class 150 (DR 18), with bell end with gasket, and with spigot end.
 1. Comply with UL 1285 for fire-service mains.
 2. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. For Water Service Lines Smaller than 4” – ASTM D2241, IPS Class 160 (SDR 26) PVC pipe with bell-and-spigot ends for gasketed joints as manufactured by the North American Pipe Corporation.
 1. Gaskets: ASTM F477, elastomeric seals. The assembled joint shall meet the requirements of ASTM D3139.
2.2 GATE VALVES

A. AWWA, Cast-Iron Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by:
 2. Nonrising-Stem, Resilient-Seated Gate Valves:
 a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Mechanical joint.
 4) Interior Coating: Complying with AWWA C550.

2.3 GATE VALVE ACCESSORIES AND SPECIALTIES

A. Tapping-Sleeve Assemblies:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. East Jordan Iron Works, Inc.
 c. Flowserve.
 d. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 e. McWane, Inc.; Kennedy Valve Div.
 f. McWane, Inc.; M & H Valve Company Div.
 g. Mueller Co.; Water Products Div.
 h. U.S. Pipe and Foundry Company.
 2. Description: Sleeve and valve compatible with drilling machine.
 b. Tapping Sleeve: Stainless-steel, two-piece bolted sleeve with ductile iron flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 c. Valve: Mueller "open-right" gate valve.
 3. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.
 4. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.

2.4 FIRE HYDRANTS

A. Dry-Barrel Fire Hydrants:
 1. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, 5-1/4-inch main valve, drain valve, and NPS 6 mechanical-joint inlet. Hydrant shall have cast-iron body, compression-type valve opening against pressure and closing with pressure.
 a. Standards: UL 246, FMG approved.
 b. Pressure Rating: 150 psig minimum.
 c. Outlet Threads: NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.
 d. Operating and Cap Nuts: Pentagon, 1-1/2 inches point to flat.
 2. Manufacturer’s: Subject to compliance with requirements, provide products by:

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Earthwork Section for excavating, trenching, and backfilling.
3.2 PIPING INSTALLATION

A. Bury piping with depth of cover over top at least 42 inches from top of pipe, unless otherwise noted.
B. Install vertical bends as necessary on proposed water mains at utility crossings to maintain a minimum of two feet of vertical clearance between the water main and other utilities.
C. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 1. Terminate water-service piping at building wall until building-water piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.
D. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping.
E. See Section 221116 "Domestic Water Piping" for potable-water piping inside the building.

3.3 JOINT CONSTRUCTION

A. Make pipe joints according to the following:
 1. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139 and pipe manufacturer's written instructions.
 2. PE Piping Joints: Use jointing materials according to AWWA C906, socket or butt-fusion type.

3.4 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types to be used include the following:
 1. Bolted flanged joints.

3.5 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

3.6 FIRE HYDRANT INSTALLATION

A. General: Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.

3.7 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Connect water service lines to existing water main with tap connections.
C. Connect water-distribution piping to interior domestic water piping.
3.8 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test per City.

C. Prepare reports of testing activities.

3.9 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 "Earth Moving."

3.10 CLEANING

A. Disinfection: After installation, the entire main shall be flushed and disinfected by chlorination. Flushing shall be carried out until a turbidity-free water is obtained from all points along the main. The Contractor shall disinfect the main or prepare the main for disinfection by the owning authority when so noted in the Special Provisions.

1. Chlorination by the Contractor shall conform to AWWA C651 and be performed using a 1 percent chlorine solution prepared from granular calcium hypochlorite (1 pound (0.45 kg) of HTH per 8 gallons (30.31) of water). Water entering the new main shall receive a dose of the chlorine solution fed at a constant rate such that the water will have not less than 25 mg/l free chlorine.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>1 Percent Chlorine Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration in 100 feet (30.5 m) of Pipe</td>
</tr>
<tr>
<td></td>
<td>In.</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td>300</td>
</tr>
</tbody>
</table>

1. The chlorinated water shall be retained in the main for at least 24 hours, during which time all valves and hydrants in the section treated shall be operated in order to disinfect the appurtenances.
2. At the end of the 24-hour period, the treated water in all portions of the main shall have a residual of not less than 10 mg/l free chlorine.
3. Mains shall be flushed prior to placing in service. The flushing water shall be disposed of without damage to public or private property.
4. The contractor shall repeat disinfection procedure should initial treatment fail to yield satisfactory results.

B. Hydrostatic Testing: The Contractor shall perform hydrostatic pressure and leakage tests in accordance with AWWA C600 procedures. Where practicable, mains shall be tested in lengths between line valves or plugs of no more than 1,500 feet (460 m) in length.

C. All testing shall follow City specifications.

D. Conduct test at a pressure of 150 psi (10.34 Bar) measured at the highest point of the main. Duration of the test shall be not less than 2 hours. Maintain pressure throughout test +5 psi (0.35 Bar) of test pressure.

E. Leakage test shall be conducted concurrently with the pressure test. Acceptable when leakage does not exceed that determined by the following formula:

English Units

\[L = \frac{0.0000075SD(P)^{1/2}}{2}, \text{ in which} \]

\[L = \text{maximum allowable leakage in gallons per hour} \]
S = length of pipe tested in feet
D = nominal internal diameter of pipe being tested in inches
P = average actual leakage test pressure in psi

When testing against closed metal-seated valves, an additional leakage per closed valve of 0.0078 gal/hr/in (0.012 L/hr/mm) of nominal valve size shall be allowed. When hydrants are in the test section, the test shall be made against the closed hydrant. All visible leaks at exposed joints and all leaks evident on the surface where joints are covered shall be repaired regardless of total leakage as shown by test. All pipe, fittings, valves and other materials found to be defective under test shall be removed and replaced at the Contractor's expense. Lines which fail to meet test shall be repaired and retested as necessary until the test requirements are met.

3.11 WATER MAINS NEAR SANITARY SEWERS

A. Horizontal Separation: Whenever possible, a water main shall be laid at least 10 feet horizontally from any sanitary sewer, storm sewer, or manhole. When local conditions prevent a lateral separation of 10 feet, a water main may be laid closer than 10 feet to a sanitary or storm sewer, provided that the water main is laid in a separate trench, or on an undisturbed earth shelf located on one side of the sewer at such an elevation that the bottom of the water main is at least 24 inches above the top of the sewer. When it is impossible to obtain proper horizontal and vertical separation as stipulated above, both the water main and sewer must be constructed of mechanical or slip-on ductile-iron pipe, or prestressed concrete cylinder pipe and should be pressure tested to assure water tightness before backfilling.

B. Vertical Separation: Whenever water mains must cross sanitary sewers, house sewers, or storm drains, the water main shall be laid at such an elevation that the bottom of the water main is 24 inches above the top of the drain or sewer. A full length of water main pipe shall be centered over the sewer line to be crossed so that the joints will be equally distant from the sewer and as remote therefrom as possible. This vertical separation shall be maintained for the portion of the water main located within 10 feet, horizontally, or any sewer or drain it crosses.

C. Unusual Conditions: Where conditions prevent the minimum vertical separation set forth above from being maintained, or when it is necessary for the water main to pass under a sewer or drain, the water main shall be laid with slip-on or mechanical joint ductile-iron pipe which must extend on each side of the crossing to a distance from the sewer of at least 10 feet. In making such a crossing, a full length of water main pipe must be centered over or under the sewer to be crossed, so that the joints will be equidistant from the sewer and as remote therefrom as possible. The sewer line must also be constructed of ductile-iron pipe with slip-on or mechanical joints until the normal distance from the sewer line to the water main is at least 10 feet. Where a water main must cross under a sewer, a vertical separation of 24 inches between the bottom of the sewer and the top of the water main shall be maintained, with adequate support, especially for the larger sized sewer lines to prevent them from settling on and breaking the water main. The sewer shall be constructed of ductile-iron pipe for a distance of 10 feet on either side of the crossing, or other suitable protection as approved by the Engineer shall be provided. Where these conditions cannot be met, the Engineer shall be consulted as to the precautions to be taken to protect the public water supply.

D. Sewer Manholes: No water pipe shall pass through, or come in contact with, any part of a sewer or a sewer manhole.

END OF SECTION 331100
SECTION 333100 - FACILITY SANITARY SEWERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe and fittings.
 2. Cleanouts.

1.3 SUBMITTALS

A. Product Data: For the following:
 1. Pipes and fittings.
 2. Cleanouts.

B. Field quality-control reports.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Sewerage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Do not proceed with interruption of service without Construction Manager's and Owner's written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. PVC Gravity Sewer Piping:
 2. Fittings: ASTM D 3034, PVC with bell ends.
2.2 CLEANOUTS

A. PVC Cleanouts:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Canplas LLC.
 b. IPS Corporation.
 c. NDS.
 d. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 f. Zurn Light Commercial Products Operation; Zurn Plumbing Products Group.
 2. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.3 MANHOLES

A. Manholes shall be per detail on construction documents and comply with City standards.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in the Earth Moving Section.

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.

C. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

D. Install gravity-flow, nonpressure, drainage piping according to the following:
 1. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.

E. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:
 1. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomer-gasket joints.
3.4 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use PVC pipe fittings in sewer pipes at branches for cleanouts and use PVC pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 2. Use Heavy-Duty, top-loading classification cleanouts in the parking lot area.

B. Set cleanout frames and covers in pavement areas in a cast-in-place-concrete block, 18 by 18 by 12 inches deep with 12 inches of treated 95% compacted subgrade below concrete. Set with top flush with surrounding pavement.

3.5 CONNECTIONS

A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 221316 "Sanitary Waste and Vent Piping."

B. Make connections to existing / proposed piping and underground manholes and sewer mains.
 1. Connect to existing / proposed City sanitary sewer manholes and sewer mains. Coordinate with the City prior to installing sewer service on the school site and sewer mains and manholes in the public right-of-way.

3.6 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 1. Submit separate report for each system inspection.
 2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.
 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 1. Do not enclose, cover, or put into service before inspection and approval.
 2. Test completed piping systems according to State Minimum Standards of Design.
 3. Perform low pressure air testing per the latest version of ASTM C828-76T per State Minimum Standards of Design.
 4. Test pipe for pipe deflection per State Minimum Standards of Design. The pipe deflection shall not exceed 5% of the inside diameter of the pipe.
 5. Schedule tests and inspections by City with at least 24 hours' advance notice.
 6. Submit separate report for each test.

3.7 CLEANING

A. Clean dirt and superfluous material from interior of piping. Flush with potable water.

3.8 WATER MAINS NEAR SANITARY SEWERS

A. Horizontal Separation: Whenever possible, a water main shall be laid at least 10 feet horizontally from any sanitary sewer, storm sewer, or manhole. When local conditions prevent a lateral separation of 10 feet, a water main may be laid closer than 10 feet to a sanitary or storm sewer, provided that the water main is laid in a separate trench, or on an undisturbed earth shelf located on one side of the sewer at such an elevation that the bottom of the water
main is at least 24 inches above the top of the sewer. When it is impossible to obtain proper horizontal and vertical separation as stipulated above, both the water main and sewer must be constructed of mechanical or slip-on ductile-iron pipe, or prestressed concrete cylinder pipe and should be pressure tested to assure water tightness before backfilling.

B. Vertical Separation: Whenever water mains must cross sanitary sewers, house sewers, or storm drains, the water main shall be laid at such an elevation that the bottom of the water main is 24 inches above the top of the drain or sewer. A full length of water main pipe shall be centered over the sewer line to be crossed so that the joints will be equally distant from the sewer and as remote therefrom as possible. This vertical separation shall be maintained for the portion of the water main located within 10 feet, horizontally, or any sewer or drain it crosses.

C. Unusual Conditions: Where conditions prevent the minimum vertical separation set forth above from being maintained, or when it is necessary for the water main to pass under a sewer or drain, the water main shall be laid with slip-on or mechanical joint ductile-iron pipe which must extend on each side of the crossing to a distance from the sewer of at least 10 feet. In making such a crossing, a full length of water main pipe must be centered over or under the sewer to be crossed, so that the joints will be equidistant from the sewer and as remote therefrom as possible. The sewer line must also be constructed of ductile-iron pipe with slip-on or mechanical joints until the normal distance from the sewer line to the water main is at least 10 feet. Where a water main must cross under a sewer, a vertical separation of 24 inches between the bottom of the sewer and the top of the water main shall be maintained, with adequate support, especially for the larger sized sewer lines to prevent them from settling on and breaking the water main. The sewer shall be constructed of ductile-iron pipe for a distance of 10 feet on either side of the crossing, or other suitable protection as approved by the Engineer shall be provided. Where these conditions cannot be met, the Engineer shall be consulted as to the precautions to be taken to protect the public water supply.

D. Sewer Manholes: No water pipe shall pass through, or come in contact with, any part of a sewer or a sewer manhole.

END OF SECTION 333100
SECTION 334100 - STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe and fittings.
 2. Cleanouts.
 3. PVC drain basins.
 4. Stormwater inlets.
 5. End sections / pipe outfalls.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:
 1. Trench Drain: Include elevations, sections, details, frames, covers, and depths.
 3. Concrete Structures: Include elevations, sections, details, frames, covers, and depths.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes according to manufacturer's written rigging instructions.

D. Handle stormwater inlets according to manufacturer's written rigging instructions.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Construction Manager and Owner no fewer than two days in advance of proposed interruption of service.
PART 2 - PRODUCTS

2.1 PE PIPE AND FITTINGS
A. HDPE Dual-Wall Pipe and Fittings NPS 3 to NPS 10: AASHTO M 252M, Type S, with smooth waterway for coupling joints.
B. HDPE Dual-Wall Pipe and Fittings NPS 12 to NPS 60: AASHTO M 294M, Type S, with smooth waterway for coupling joints.

2.2 PVC PIPE AND FITTINGS
A. Pipe: ASTM D1785 Schedule 40 PVC, with plain ends for solvent-cemented joints.
B. PVC pipe to be used as riser pipe for building downspouts below grade.

2.3 CONCRETE PIPE AND FITTINGS
A. Reinforced-Concrete Sewer Pipe and Fittings conforming to ASTM C76.
 2. Class III, Wall B.

2.4 CLEANOUTS
A. Plastic Cleanouts:
 1. Manufacturers: Subject to compliance with requirements available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Canplas LLC.
 b. IPS Corporation.
 c. NDS Inc.
 d. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 f. Zurn Light Commercial Products Operation; Zurn Plumbing Products Group.
 2. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.5 PVC DRAIN BASINS
A. Drain basins shall be manufactured from PVC pipe stock conforming to ASTM D1784 cell class 12454. Structure and pipe connections shall be watertight conforming to ASTM D3212.
 1. Frames and grates shall be ductile iron and shall meet loading requirements shown.

2.6 STORMWATER INLETS / MANHOLES / JUNCTION BOXES
A. Curb inlets, manholes, and junction boxes per plan details.

2.7 PIPE OUTLETS
A. Install concrete toe wall on pipe end section and turf reinforcement mat at pipe end sections. See plans for location and details.
B. Pipe outfalls shall have HDPE or CMP pre-manufactured end sections.

C. HDPE end sections shall conform to ASTM D3530 minimum cell classification 213320C. End sections shall have a toe plate to cast into a concrete toe wall.

D. Corrugated metal end sections shall be fabricated from galvanized base metal, conform to ASTM A 760/A, and meet CMP pipe manufacturer design standards. End sections shall have a toe plate to cast into a concrete toe wall.

2.8 TRENCH DRAIN

A. Trench drain shall be an ACO Klassik Drain. See utility plan notes for further details.

2.9 CONCRETE

A. General: Cast-in-place concrete according to ACI 318, and the following:
 1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 deformed steel.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

C. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

D. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

E. Install gravity-flow, nonpressure drainage piping according to the following:
 1. Install piping pitched down in direction of flow.
 2. Install PE corrugated sewer piping according to ASTM D 2321.
 3. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.
 4. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."
3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure drainage piping according to the following:
 1. Join corrugated PE piping according to ASTM D 3212 for push-on joints.
 2. Join PVC cellular-core piping according to ASTM D 2321 and ASTM F 891 for solvent-cemented joints.
 4. Join dissimilar pipe materials with nonpressure-type flexible couplings.

3.4 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 2. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.

B. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.5 PVC DRAIN BASINS

A. PVC drain basins shall be installed per ASTM D2321 and manufacturer specifications.

3.6 TRENCH DRAIN

A. Install trench drain per manufacturer specifications.

3.7 CONNECTIONS

A. Connect nonpressure, gravity-flow drainage piping in building's storm building drains specified in Section 221413 "Storm Drainage Piping."

B. Make connections to piping.
 1. Use commercially manufactured wye fittings for piping branch connections unless a structure is indicated.
 2. Make connections to structures by cutting into existing unit and creating an opening large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.
 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
 3. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.8 IDENTIFICATION

A. Materials and their installation are specified in Division 31 Section "Earth Moving." Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.
 1. Use warning tape or detectable warning tape over ferrous piping.
 2. Use detectable warning tape over nonferrous piping and over edges of underground structures.

3.9 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
1. Submit separate reports for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.
3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.
B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 1. Do not enclose, cover, or put into service before inspection and approval.
 2. Test completed piping systems according to requirements of authorities having jurisdiction.
 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
 4. Submit separate report for each test.
 5. Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Exception: Piping with soiltight joints unless required by authorities having jurisdiction.
 b. Option: Test plastic piping according to ASTM F 1417.
 c. Option: Test concrete piping according to ASTM C 924.
C. Leaks and loss in test pressure constitute defects that must be repaired.
D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.10 CLEANING
A. Clean interior of piping of dirt and superfluous materials. Flush with water.

END OF SECTION 334100