GRAVEL SECTION
- 9" GRAVEL
TENSAR BX1100
GEOGRID
3" 6" - 12" CEMENT TREATED SUBGRADE
(95% STD. DENSITY)

NOTES:
1. GRAVEL SHALL BE WELL GRADED WITH NO MORE THAN 15% PASSING THE NO. 200 SIEVE.
GRADING NOTES:
1. All site grading shall be performed in accordance with the grading plan provided. Grade control points shall be established.
2. All grading shall be consistent with the existing contours.
3. All grading shall be performed in such a manner as to prevent erosion and sedimentation issues.
4. All grading shall be performed in accordance with the approved site development plan.
5. All grading shall be performed in accordance with the approved erosion control plan.
6. All grading shall be performed in accordance with the approved stormwater management plan.
7. All grading shall be performed in accordance with the approved site access plan.
8. All grading shall be performed in accordance with the approved utility service plan.
9. All grading shall be performed in accordance with the approved site safety plan.
10. All grading shall be performed in accordance with the approved construction schedule.
11. All grading shall be performed in accordance with the approved construction budget.
12. All grading shall be performed in accordance with the approved construction specifications.

EROSION CONTROL NOTES:
1. All erosion control measures shall be in accordance with the approved erosion control plan.
2. All erosion control measures shall be in accordance with the approved soil stabilization plan.
3. All erosion control measures shall be in accordance with the approved vegetation management plan.
4. All erosion control measures shall be in accordance with the approved stormwater management plan.
5. All erosion control measures shall be in accordance with the approved site access plan.
6. All erosion control measures shall be in accordance with the approved utility service plan.
7. All erosion control measures shall be in accordance with the approved site safety plan.
8. All erosion control measures shall be in accordance with the approved construction schedule.
9. All erosion control measures shall be in accordance with the approved construction budget.
10. All erosion control measures shall be in accordance with the approved construction specifications.

GRADING LEGEND:
- Existing Grade
- Proposed Grade
- Topographic Contour
- Vegetation
- Watercourse
- Erosion Control
- Stormwater Management
- Site Safety
- Construction
- Property Line
- Legal Description

Please consider the environment before printing this.
The Professional Engineers seal affixed to this sheet applies only to the material and items shown on this sheet. All drawings, instruments or other documents not exhibiting this seal shall not be considered prepared by this engineer, and this engineer expressly disclaims any and all responsibility for such plan, drawings, or documents not exhibiting this seal.
Building Code:
1. The design and construction shall conform to the 2018 International Building Code (IBC) as amended by the
2018 International Residential Code (IRC).

Design Notes:
1. The project shall conform to the 2018 International Building Code (IBC) as amended by the
2018 International Residential Code (IRC).
2. The building shall comply with the applicable provisions of the 2018 International Building Code (IBC) as amended by the
2018 International Residential Code (IRC).
3. The building shall be designed and constructed in accordance with the 2018 International Building Code (IBC) as amended by the
2018 International Residential Code (IRC).

Special Inspection of Concrete Construction - Table 1705.3

<table>
<thead>
<tr>
<th>Task</th>
<th>Inspector's Task</th>
<th>Inspection Site</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symbols Legend:
- PLAN VIEW
- ELEVATION VIEW
- SECTION VIEW
- DETAILS
- DIMENSIONS
- MATERIALS
- FINISHES
- LIGHTING
- SYMBOLS
- LEGENDS
- REFERENCES
- NOTICES
- DRAWN BY:
- DATE:

General Notes:
- All dimensions are shown in inches unless otherwise noted.
- All materials shall be in accordance with the specifications herein.
- All work shall be performed in accordance with the approved drawings and specifications.
- All work shall be checked and approved by the special inspector before the next work sequence.

Additional Notes:
- All work shall be performed in accordance with the approved drawings and specifications.
- All work shall be checked and approved by the special inspector before the next work sequence.
- All work shall be performed in accordance with the approved drawings and specifications.
- All work shall be checked and approved by the special inspector before the next work sequence.
- All work shall be performed in accordance with the approved drawings and specifications.
FOUNDATION NOTES
1. TOP OF WALL FOOTING ELEVATION = 98' - 0" U.N.O.
2. GRIDS INDICATE EXTERIOR FACE OF CONCRETE WALLS.
3. RE: SHEET S300 FOR TOP OF WALL ELEVATIONS, COORDINATE TOP OF WALL WITH ARCHITECTURAL PLANS.
4. FOUNDATION AND ANCHORAGE DESIGN IS BASED ON PRELIMINARY LEVEL BASE REACTION REPORT PROVIDED BY CANOPY MFR. DESIGN IS TO BE CONFIRMED IN CONSTRUCTION ADMINISTRATION PRIOR TO ORDERING ANCHOR RODS FOR COORDINATION AND FINAL LAYOUT.

PLAN REFERENCE NOTES
8" CONCRETE SLAB ON GRADE WITH 15 MIL VAPOR RETARDER AND 4" CRUSHED ROCK DRAINAGE FILL PER SPECIFICATION. REINFORCE PER TYPICAL DETAILS. TOP OF CONCRETE ELEVATION VARIES PER CIVIL. MAXIMUM TOP OF CONCRETE ELEVATION = 829.07 = 100' - 0".

PROVIDE (2) #5 x 4'-0" LG DIAGONAL BARS AT ALL RE-ENTRANT CORNERS PER A13/S530. CENTER BARS ON CORNERS IN CENTER OF SLAB.

FABRIC CANOPY TRUSS BASE PLATE PER CANOPY MFR. BASE PLATES SHALL BE LOCATED SUCH THAT BASE PLATE ANCHORS ARE CENTERED ON THE 1'-4" CONCRETE WALLS. FINAL NORTH-SOUTH LOCATIONS TO BE DETERMINED AND COORDINATED WITH CANOPY MFR. CARRY TOP OF GRADE BEAM OVER ADJACENT WALL FOOTINGS.

REF: A1 / 300 FOR WALL AND FOOTING REINFORCING INFORMATION.

PROVIDE 6" MINIMUM DISTANCE FROM ANCHOR ROD TO EDGE OF DOOR OPENING.
Anchor Rod Schedule

<table>
<thead>
<tr>
<th>Anchor Rod</th>
<th>Diameter</th>
<th>Length</th>
<th>Distance from Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-1</td>
<td>3/4"</td>
<td>12"</td>
<td>4"</td>
</tr>
<tr>
<td>AR-2</td>
<td>1"</td>
<td>18"</td>
<td>6"</td>
</tr>
</tbody>
</table>

Typical Reinforcing Splice Length Table

<table>
<thead>
<tr>
<th>Size</th>
<th>Concreting Tension Grade 60 Reinforcement, Normalweight Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap</td>
<td>Tapered Lap or Lap Splice per Plan</td>
</tr>
<tr>
<td>Splice Length</td>
<td>Bottom Bars</td>
</tr>
<tr>
<td>#5</td>
<td>12"</td>
</tr>
<tr>
<td>#6</td>
<td>16"</td>
</tr>
<tr>
<td>#8</td>
<td>20"</td>
</tr>
<tr>
<td>#10</td>
<td>24"</td>
</tr>
</tbody>
</table>

Notes:
1. Applies to concrete walls, foundations, etc.
2. Concreted splices to have a splice of normalweight reinforcement.
3. Splice length per typical reinforcing splice lengths Table 36-2003

Concrete Penetration Reinforcing

- Bottom
- Other

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Slab on Grade Details

- Typical Pour at Finishing Details

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Footing Step

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner

- Typical Concrete Wall Construction Joint

- Typical Concrete Wall Control Joint Detail

- Typical Concrete Slab & Wall Sawcote Detail

- Typical Concrete Slab Details

- Typical Footing Step

- Typical Reinforcing at Re-entrant Corner